Title: | Selective Toluene Detection with Mo(2)CT(x) MXene at Room Temperature |
Author(s): | Guo W; Surya SG; Babar V; Ming F; Sharma S; Alshareef HN; Schwingenschlogl U; Salama KN; |
Address: | "Sensors Lab, Advanced Membranes & Porous Materials Center (AMPMC), CEMSE, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia. Computational Physics & Materials Science Lab, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia. Functional Nanomaterials & Devices Lab, Materials Science and Engineering, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia" |
Journal Title: | ACS Appl Mater Interfaces |
ISSN/ISBN: | 1944-8252 (Electronic) 1944-8244 (Linking) |
Abstract: | "MXenes are a promising class of two-dimensional materials with several potential applications, including energy storage, catalysis, electromagnetic interference shielding, transparent electronics, and sensors. Here, we report a novel Mo(2)CT(x) MXene sensor for the successful detection of volatile organic compounds (VOCs). The proposed sensor is a chemiresistive device fabricated on a Si/SiO(2) substrate using photolithography. The impact of various MXene process conditions on the performance of the sensor is evaluated. The VOCs, such as toluene, benzene, ethanol, methanol, and acetone, are studied at room temperature with varying concentrations. Under optimized conditions, the sensor demonstrates a detection limit of 220 ppb and a sensitivity of 0.0366 Omega/ppm at a toluene concentration of 140 ppm. It exhibits an excellent selectivity toward toluene against the other VOCs. Ab initio simulations demonstrate selectivity toward toluene in line with the experimental results" |
Keywords: | MXene chemiresistor molybdenum carbide sensor volatile organic compound; |
Notes: | "PubMed-not-MEDLINEGuo, Wenzhe Surya, Sandeep G Babar, Vasudeo Ming, Fangwang Sharma, Sitansh Alshareef, Husam N Schwingenschlogl, Udo Salama, Khaled N eng 2020/12/09 ACS Appl Mater Interfaces. 2020 Dec 23; 12(51):57218-57227. doi: 10.1021/acsami.0c16302. Epub 2020 Dec 8" |