Title: | Profiling the Proteome of Cyst Nematode-Induced Syncytia on Tomato Roots |
Author(s): | Filipecki M; Zurczak M; Matuszkiewicz M; Swiecicka M; Kurek W; Olszewski J; Koter MD; Lamont D; Sobczak M; |
Address: | "Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Faculty of Biology and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland. Department of Botany, Institute of Biology, Faculty of Biology and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland. Veterinary Research Centre, Centre for Biomedicine Research, Centre for Regenerative Medicine, Department of Large Animal Diseases and Clinic, Institute for Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 100, 02-797 Warsaw, Poland. 'FingerPrints' Proteomics Facility, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK" |
ISSN/ISBN: | 1422-0067 (Electronic) 1422-0067 (Linking) |
Abstract: | "Cyst nematodes are important herbivorous pests in agriculture that obtain nutrients through specialized root structures termed syncytia. Syncytium initiation, development, and functioning are a research focus because syncytia are the primary interface for molecular interactions between the host plant and parasite. The small size and complex development (over approximately two weeks) of syncytia hinder precise analyses, therefore most studies have analyzed the transcriptome of infested whole-root systems or syncytia-containing root segments. Here, we describe an effective procedure to microdissect syncytia induced by Globodera rostochiensis from tomato roots and to analyze the syncytial proteome using mass spectrometry. As little as 15 mm(2) of 10-microm-thick sections dissected from 30 syncytia enabled the identification of 100-200 proteins in each sample, indicating that mass-spectrometric methods currently in use achieved acceptable sensitivity for proteome profiling of microscopic samples of plant tissues (approximately 100 microg). Among the identified proteins, 48 were specifically detected in syncytia and 7 in uninfected roots. The occurrence of approximately 50% of these proteins in syncytia was not correlated with transcript abundance estimated by quantitative reverse-transcription PCR analysis. The functional categories of these proteins confirmed that protein turnover, stress responses, and intracellular trafficking are important components of the proteome dynamics of developing syncytia" |
Keywords: | Animals *Chromadorea Giant Cells/*metabolism *Solanum lycopersicum/metabolism/parasitology Plant Proteins/*metabolism *Plant Roots/metabolism/parasitology Proteome/*metabolism Globodera rostochiensis Solanum lycopersicum laser capture microdissection mass; |
Notes: | "MedlineFilipecki, Marcin Zurczak, Marek Matuszkiewicz, Mateusz Swiecicka, Magdalena Kurek, Wojciech Olszewski, Jaroslaw Koter, Marek Daniel Lamont, Douglas Sobczak, Miroslaw eng 2015/17/B/NZ9/03605/National Science Center/ 2017/25/B/NZ9/02574/National Science Center/ Switzerland 2021/11/28 Int J Mol Sci. 2021 Nov 10; 22(22):12147. doi: 10.3390/ijms222212147" |