Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractQuantitative analysis of exhaled carbonyl compounds distinguishes benign from malignant pulmonary disease    Next AbstractPhthalocyanine-based field-effect transistors as gas sensors »

Ultrason Sonochem


Title:Probing the radical chemistry and the reaction zone during the sono-degradation of endocrine disruptor 2-phenoxyethanol in water
Author(s):Boutamine Z; Hamdaoui O; Merouani S;
Address:"Laboratory of Environmental Engineering, Department of Process Engineering, Faculty of Engineering, Badji Mokhtar - Annaba University, P.O. Box 12, 23000 Annaba, Algeria. Laboratory of Environmental Engineering, Department of Process Engineering, Faculty of Engineering, Badji Mokhtar - Annaba University, P.O. Box 12, 23000 Annaba, Algeria. Electronic address: ohamdaoui@yahoo.fr. Laboratory of Environmental Engineering, Department of Process Engineering, Faculty of Engineering, Badji Mokhtar - Annaba University, P.O. Box 12, 23000 Annaba, Algeria; Laboratory of Environmental Process Engineering, Department of Chemical Engineering, Faculty of Process Engineering, University of Constantine 3, 25000 Constantine, Algeria"
Journal Title:Ultrason Sonochem
Year:2018
Volume:20171021
Issue:
Page Number:521 - 526
DOI: 10.1016/j.ultsonch.2017.10.019
ISSN/ISBN:1873-2828 (Electronic) 1350-4177 (Linking)
Abstract:"Sonochemical degradation at 600?ª+kHz of 2-phenoxyethanol (PhE), an endocrine disrupting compound, was performed in the presence of several organic additives, namely: 2-propanol, Triton X-100 and sucrose, of different volatilities to obtain detailed information on the reaction zone and the oxidation pathway of this priority emerging water contaminate. It was found that sonication at 600?ª+kHz and 120?ª+W completely remove PhE (10?ª+mg?ª+L(-1)) from aerated solutions within 100?ª+min of irradiation. Very little removal of PhE ( approximately 7%) and low accumulation of H(2)O(2) took place in the presence of adequate amount of 2-propanol, indicating that reaction with OH radical outside the bubble is the major degradation pathway of PhE. Addition of the hydrophobic surfactant Triton X-100, as an OH-probe for the interfacial region, at 10 and 100?ª+mM reduced the degradation event by 57% and 72% and resulted in more than 50% decrease in the yield of H(2)O(2), confirming that PhE degradation occurs mainly at the bubble/solution interface with hydroxyl radical attack. Addition of the hydrophilic substrate glucose at high doses decreased slightly ( approximately 7%) the degradation of PhE and the formation rate of H(2)O(2), meaning that the bulk of the solution participate marginally in the degradation of the pollutant. Finally, analyzing the degradation rates at various initial PhE concentrations (2-400?ª+mg?ª+L(-1)) with a heterogeneous Langmuir type mechanism underlined the predominance of interfacial radical reactions during the oxidation of PhE, particularly at high initial pollutant concentrations"
Keywords:2-Phenoxyethanol Chemical probes Endocrine disrupting compound Hydroxyl radical Sonochemical degradation;
Notes:"PubMed-not-MEDLINEBoutamine, Zineb Hamdaoui, Oualid Merouani, Slimane eng Netherlands 2017/11/16 Ultrason Sonochem. 2018 Mar; 41:521-526. doi: 10.1016/j.ultsonch.2017.10.019. Epub 2017 Oct 21"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 28-09-2024