Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous Abstract'Super e-noses': Multi-layer perceptron classification of volatile odorants from the firing rates of cross-species olfactory receptor arrays    Next AbstractSelection on male sex pheromone composition contributes to butterfly reproductive isolation »

Mol Ecol


Title:"Pollen, wind and fire: how to investigate genetic effects of disturbance-induced change in forest trees"
Author(s):Bacles CF;
Address:"25 rue Charles Floquet, 64100, Bayonne, France"
Journal Title:Mol Ecol
Year:2014
Volume:23
Issue:1
Page Number:20 - 22
DOI: 10.1111/mec.12569
ISSN/ISBN:1365-294X (Electronic) 0962-1083 (Linking)
Abstract:"Understanding the consequences of habitat disturbance on mating patterns although pollen and seed dispersal in forest trees has been a long-standing theme of forest and conservation genetics. Forest ecosystems face global environmental pressures from timber exploitation to genetic pollution and climate change, and it is therefore essential to comprehend how disturbances may alter the dispersal of genes and their establishment in tree populations in order to formulate relevant recommendations for sustainable resource management practices and realistic predictions of potential adaptation to climate change by means of range shift or expansion (Kremer et al. 2012). However, obtaining reliable evidence of disturbance-induced effects on gene dispersal processes from empirical evaluation of forest tree populations is difficult. Indeed, tree species share characteristics such as high longevity, long generation time and large reproductive population size, which may impede the experimenter's ability to assess parameters at the spatial and time scales at which any change may occur (Petit and Hampe 2006). It has been suggested that appropriate study designs should encompass comparison of populations before and after disturbance as well as account for demonstrated variation in conspecific density, that is, the spatial distribution of mates, and forest density, including all species and relating to alteration in landscape openness (Bacles & Jump 2011). However, more often than not, empirical studies aiming to assess the consequences of habitat disturbance on genetic processes in tree populations assume rather than quantify a change in tree densities in forests under disturbance and generally fail to account for population history, which may lead to inappropriate interpretation of a causal relationship between population genetic structure and habitat disturbance due to effects of unmonitored confounding variables (Gauzere et al. 2013). In this issue, Shohami and Nathan (2014) take advantage of the distinctive features of the fire-adapted wind-pollinated Aleppo pine Pinus halepensis (Fig. 1) to provide an elegant example of best practice. Thanks to long-term monitoring of the study site, a natural stand in Israel, Shohami and Nathan witnessed the direct impact of habitat disturbance, here taking the shape of fire, on conspecific and forest densities and compared pre- and postdisturbance mating patterns estimated from cones of different ages sampled on the same surviving maternal individuals (Fig. 2). This excellent study design is all the more strong that Shohami and Nathan took further analytical steps to account for confounding variables, such as historical population genetic structure and possible interannual variation in wind conditions, thus giving high credibility to their findings of unequivocal fire-induced alteration of mating patterns in P. halepensis. Most notably, the authors found, at the pollen pool level, a disruption of local genetic structure which, furthermore, they were able to attribute explicitly to enhanced pollen-mediated gene immigration into the low-density fire-disturbed stand. This cleverly designed research provides a model approach to be followed if we are to advance our understanding of disturbance-induced dispersal and genetic change in forest trees"
Keywords:*Fires *Gene Flow *Genetic Variation Pinus/*genetics *Pollination conservation genetics habitat degradation plant mating systems population genetics-empirical;
Notes:"MedlineBacles, Cecile F E eng Comment England 2014/01/01 Mol Ecol. 2014 Jan; 23(1):20-2. doi: 10.1111/mec.12569"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 14-01-2025