Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractThe consequences of volatile organic compound mediated bacterial and fungal interactions    Next Abstract"Intra-urban variability of air pollution in Windsor, Ontario--measurement and modeling for human exposure assessment" »

Curr Biol


Title:Environmental strigolactone drives early growth responses to neighboring plants and soil volume in pea
Author(s):Wheeldon CD; Hamon-Josse M; Lund H; Yoneyama K; Bennett T;
Address:"School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK. Graduate School of Agriculture, Ehime University, Matsuyama, Japan; Japan Science and Technology, PRESTO, Kawaguchi, Japan. School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK. Electronic address: t.a.bennett@leeds.ac.uk"
Journal Title:Curr Biol
Year:2022
Volume:20220714
Issue:16
Page Number:3593 - 3600
DOI: 10.1016/j.cub.2022.06.063
ISSN/ISBN:1879-0445 (Electronic) 0960-9822 (Print) 0960-9822 (Linking)
Abstract:"There has been a dramatic recent increase in the understanding of the mechanisms by which plants detect their neighbors,(1) including by touch,(2) reflected light,(3) volatile organic chemicals, and root exudates.(4)(,)(5) The importance of root exudates remains ill-defined because of confounding experimental variables(6)(,)(7) and difficulties disentangling neighbor detection in shoot and roots.(8-10) There is evidence that root exudates allow distinction between kin and non-kin neighbors,(11-13) but identification of specific exudates that function in neighbor detection and/or kin recognition remain elusive.(1) Strigolactones (SLs), which are exuded into the soil in significant quantities in flowering plants to promote recruitment of arbuscular mycorrhizal fungi (AMF),(14) seem intuitive candidates to act as plant-plant signals, since they also act as hormones in plants,(15-17) with dramatic effects on shoot growth(18)(,)(19) and milder effects on root development.(20) Here, using pea, we test whether SLs act as either cues or signals for neighbor detection. We show that peas detect neighbors early in the life cycle through their root systems, resulting in strong changes in shoot biomass and branching, and that this requires SL biosynthesis. We demonstrate that uptake and detection of SLs exuded by neighboring plants are needed for this early neighbor detection, and that plants that cannot exude SLs are outcompeted by neighboring plants and fail to adjust growth to their soil volume. We conclude that plants both exude SLs as signals to modulate neighbor growth and detect environmental SLs as a cue for neighbor presence; collectively, this allows plants to proactively adjust their shoot growth according to neighbor density"
Keywords:"Heterocyclic Compounds, 3-Ring Lactones *Mycorrhizae/physiology Peas/physiology Plant Growth Regulators Plant Roots Plants Soil *Volatile Organic Compounds neighbor detection plant-plant interactions rhizosphere signaling root exudates shoot growth strigo;"
Notes:"MedlineWheeldon, Cara D Hamon-Josse, Maxime Lund, Hannah Yoneyama, Kaori Bennett, Tom eng BB/R00398X/1/BB_/Biotechnology and Biological Sciences Research Council/United Kingdom BB/M011151/1/BB_/Biotechnology and Biological Sciences Research Council/United Kingdom Research Support, Non-U.S. Gov't England 2022/07/16 Curr Biol. 2022 Aug 22; 32(16):3593-3600.e3. doi: 10.1016/j.cub.2022.06.063. Epub 2022 Jul 14"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 27-12-2024