Title: | "Evidence for damage-dependent hygienic behaviour towards Varroa destructor-parasitised brood in the western honey bee, Apis mellifera" |
Author(s): | Schoning C; Gisder S; Geiselhardt S; Kretschmann I; Bienefeld K; Hilker M; Genersch E; |
Address: | "Institute for Bee Research, Friedrich-Engels-Strasse 32, 16540 Hohen Neuendorf, Germany. caspar@zedat.fu-berlin.de" |
ISSN/ISBN: | 1477-9145 (Electronic) 0022-0949 (Linking) |
Abstract: | "The ectoparasitic mite Varroa destructor and honey bee pathogenic viruses have been implicated in the recent demise of honey bee colonies. Several studies have shown that the combination of V. destructor and deformed wing virus (DWV) poses an especially serious threat to honey bee health. Mites transmitting virulent forms of DWV may cause fatal DWV infections in the developing bee, while pupae parasitised by mites not inducing or activating overt DWV infections may develop normally. Adult bees respond to brood diseases by removing affected brood. This hygienic behaviour is an essential part of the bees' immune response repertoire and is also shown towards mite-parasitised brood. However, it is still unclear whether the bees react towards the mite in the brood cell or rather towards the damage done to the brood. We hypothesised that the extent of mite-associated damage rather than the mere presence of parasitising mites triggers hygienic behaviour. Hygienic behaviour assays performed with mites differing in their potential to transmit overt DWV infections revealed that brood parasitised by 'virulent' mites (i.e. mites with a high potential to induce fatal DWV infections in parasitised pupae) were removed significantly more often than brood parasitised by 'less virulent' mites (i.e. mites with a very low potential to induce overt DWV infections) or non-parasitised brood. Chemical analyses of brood odour profiles suggested that the bees recognise severely affected brood by olfactory cues. Our results suggest that bees show selective, damage-dependent hygienic behaviour, which may be an economic way for colonies to cope with mite infestation" |
Keywords: | "Animals Bees/drug effects/*parasitology/*physiology/virology Behavior, Animal Female Germany Mass Spectrometry Odorants Polymerase Chain Reaction Principal Component Analysis Pupa/drug effects/parasitology/physiology/virology RNA Viruses/*physiology Smell;" |
Notes: | "MedlineSchoning, Caspar Gisder, Sebastian Geiselhardt, Sven Kretschmann, Ivonne Bienefeld, Kaspar Hilker, Monika Genersch, Elke eng Research Support, Non-U.S. Gov't England 2011/12/23 J Exp Biol. 2012 Jan 15; 215(Pt 2):264-71. doi: 10.1242/jeb.062562" |