Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractDiscrimination of volatiles of refined and whole wheat bread containing red and white wheat bran using an electronic nose    Next AbstractDevelopmental and environmental sources of pheromone variation inColias eurytheme butterflies »

Mol Cell Biol


Title:"Nucleotide sequence of the yeast STE14 gene, which encodes farnesylcysteine carboxyl methyltransferase, and demonstration of its essential role in a-factor export"
Author(s):Sapperstein S; Berkower C; Michaelis S;
Address:"Department of Cell Biology and Anatomy, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205"
Journal Title:Mol Cell Biol
Year:1994
Volume:14
Issue:2
Page Number:1438 - 1449
DOI: 10.1128/mcb.14.2.1438-1449.1994
ISSN/ISBN:0270-7306 (Print) 1098-5549 (Electronic) 0270-7306 (Linking)
Abstract:"Eukaryotic proteins initially synthesized with a C-terminal CAAX motif (C is Cys, A is aliphatic, and X can be one of several amino acids) undergo a series of modifications involving isoprenylation of the Cys residue, proteolysis of AAX, and alpha-carboxyl methyl esterification of the newly formed isoprenyl cysteine. We have previously demonstrated that STE14 encodes the enzyme which mediates carboxyl methylation of the Saccharomyces cerevisiae CAAX proteins a-factor, RAS1, and RAS2. Here we report the nucleotide sequence of STE14, which indicates that STE14 encodes a protein of 239 amino acids, predicted to contain multiple membrane-spanning segments. Mapping data indicate that STE14 resides on chromosome IV, tightly linked to ADE8. By analysis of ste14 null alleles, we demonstrated that MATa ste14 mutants are unable to mate but are viable and exhibit no apparent growth defects. Additional analysis of ste14 ras 1 and ste14 ras2 double mutants, which grow normally, reinforces our previous conclusion that RAS function is not significantly influenced by its methylation status. We examine a-factor biogenesis in a ste14 null mutant by metabolic labeling and immunoprecipitation and demonstrate that although proteolytic processing and membrane localization of a-factor are normal, the ste14 null mutant exhibits a profound block in a-factor export. This observation suggests that the methyl group is likely to be a critical recognition determinant for the a-factor transporter, STE6, thus providing insight into the substrate specificity of STE6 and also supporting the hypothesis that carboxyl methylation can have a dramatic impact on protein-protein interactions"
Keywords:"Amino Acid Sequence Base Sequence Chromosomes, Fungal DNA, Fungal/metabolism Exodeoxyribonucleases *Genes, Fungal Mating Factor Molecular Sequence Data Peptides/*metabolism Pheromones/metabolism Protein Methyltransferases/biosynthesis/*genetics/isolation;"
Notes:"MedlineSapperstein, S Berkower, C Michaelis, S eng GM41223/GM/NIGMS NIH HHS/ Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S. 1994/02/01 Mol Cell Biol. 1994 Feb; 14(2):1438-49. doi: 10.1128/mcb.14.2.1438-1449.1994"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 03-07-2024