Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractIndoor air pollution from the household combustion of coal: Tempo-spatial distribution of gaseous pollutants and semi-quantification of source contribution    Next AbstractIdentification of tartary buckwheat tea aroma compounds with gas chromatography-mass spectrometry »

Langmuir


Title:New Porous Carbon Material Derived from Carbon Microspheres Assembled in Hollow Carbon Spheres and Its Application to Toluene Adsorption
Author(s):Qin L; Li J; Nestle Asamoah E; Zhao B; Chen W; Han J;
Address:"Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, Hubei 430081, P.R. China. Hubei Provincial Industrial Safety Engineering Technology Research Center, Wuhan University of Science and Technology, Wuhan, Hubei 430081, P.R. China"
Journal Title:Langmuir
Year:2023
Volume:20230420
Issue:17
Page Number:6169 - 6177
DOI: 10.1021/acs.langmuir.3c00296
ISSN/ISBN:1520-5827 (Electronic) 0743-7463 (Linking)
Abstract:"In this paper, a new porous carbon material adsorbent was prepared using carbon microspheres assembled in hollow carbon spheres (HCS) with a hydrothermal method. Transmission electron microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and Raman spectroscopy were used to characterize the adsorbents. It was found that the diameter of carbon microspheres derived from 0.1 mol/L glucose was about 130 nm, which could be inserted inside HCS (pore size was 370-450 nm). The increase in glucose concentration would promote the diameter of carbon microspheres (CSs), and coarse CSs could not be loaded in the mesopores or macropores of HCS. Thus, the C(0.1)@HCS adsorbent had the highest Brunauer-Emmett-Teller surface area (1945 m(2)/g) and total pore volume (1.627 cm(3)/g). At the same time, C(0.1)@HCS posed a suitable ratio of micropores and mesopores, which could provide adsorption sites and volatile organic compound diffusion channels. Moreover, oxygen-containing functional groups -OH and C horizontal lineO in CSs were also introduced into HCS, and the adsorption capacity and regenerability performance of the adsorbents were improved. The dynamic adsorption capacity of C(0.1)@HCS for toluene reached 813 mg/g, and the Bangham model was more suitable for describing the toluene adsorption process. The adsorption capacity was stably kept above 770 mg/g after eight adsorption-desorption cycles"
Keywords:
Notes:"PubMed-not-MEDLINEQin, Linbo Li, Jiuli Nestle Asamoah, Ebenezer Zhao, Bo Chen, Wangsheng Han, Jun eng 2023/04/20 Langmuir. 2023 May 2; 39(17):6169-6177. doi: 10.1021/acs.langmuir.3c00296. Epub 2023 Apr 20"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 27-12-2024