Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous Abstract"Effects of tapeworm infection on male reproductive success and mating vigor in the red flour beetle, Tribolium castaneum"    Next AbstractCdc1 is required for growth and Mn2+ regulation in Saccharomyces cerevisiae »

Mol Cell Biol


Title:"A homolog of mammalian, voltage-gated calcium channels mediates yeast pheromone-stimulated Ca2+ uptake and exacerbates the cdc1(Ts) growth defect"
Author(s):Paidhungat M; Garrett S;
Address:"Department of Molecular Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA"
Journal Title:Mol Cell Biol
Year:1997
Volume:17
Issue:11
Page Number:6339 - 6347
DOI: 10.1128/MCB.17.11.6339
ISSN/ISBN:0270-7306 (Print) 1098-5549 (Electronic) 0270-7306 (Linking)
Abstract:"Previous studies attributed the yeast (Saccharomyces cerevisiae) cdc1(Ts) growth defect to loss of an Mn2+-dependent function. In this report we show that cdc1(Ts) temperature-sensitive growth is also associated with an increase in cytosolic Ca2+. We identified two recessive suppressors of the cdc1(Ts) temperature-sensitive growth which block Ca2+ uptake and accumulation, suggesting that cytosolic Ca2+ exacerbates or is responsible for the cdc1(Ts) growth defect. One of the cdc1(Ts) suppressors is identical to a gene, MID1, recently implicated in mating pheromone-stimulated Ca2+ uptake. The gene (CCH1) corresponding to the second suppressor encodes a protein that bears significant sequence similarity to the pore-forming subunit (alpha1) of plasma membrane, voltage-gated Ca2+ channels from higher eukaryotes. Strains lacking Mid1 or Cch1 protein exhibit a defect in pheromone-induced Ca2+ uptake and consequently lose viability upon mating arrest. The mid1delta and cch1delta mutants also display reduced tolerance to monovalent cations such as Li+, suggesting a role for Ca2+ uptake in the calcineurin-dependent ion stress response. Finally, mid1delta cch1delta double mutants are, by both physiological and genetic criteria, identical to single mutants. These and other results suggest Mid1 and Cch1 are components of a yeast Ca2+ channel that may mediate Ca2+ uptake in response to mating pheromone, salt stress, and Mn2+ depletion"
Keywords:Amino Acid Sequence Biological Transport Calcium/*metabolism Calcium Channels/genetics/*metabolism Cell Cycle Proteins/genetics/*metabolism Fungal Proteins/genetics/metabolism Gene Expression Ion Channel Gating Membrane Glycoproteins/genetics/metabolism M;
Notes:"MedlinePaidhungat, M Garrett, S eng Research Support, Non-U.S. Gov't 1997/10/29 Mol Cell Biol. 1997 Nov; 17(11):6339-47. doi: 10.1128/MCB.17.11.6339"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 27-12-2024