Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous Abstract"Indoor exposure to selected flame retardants and quantifying importance of environmental, human behavioral and physiological parameters"    Next AbstractLayout Optimization Method of Public Service Facilities in Residential Quarters considering Time Distance »

J Colloid Interface Sci


Title:The interplay between selective etching induced cation defects and active oxygen species for volatile organic compounds degradation
Author(s):Li Z; Wang X; Zeng M; Chen K; Cao D; Huang Y; Zhu Y; Zhang W; Wang N; Wu YA;
Address:"Guangxi Institute Fullerene Technology (GIFT), State Key Laboratory of Featured Metal Resources and Advanced Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China; Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, Materials Interface Foundry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada. Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, Materials Interface Foundry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada. Guangxi Institute Fullerene Technology (GIFT), State Key Laboratory of Featured Metal Resources and Advanced Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China. National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230029 Hefei, Anhui, China. Guangxi Institute Fullerene Technology (GIFT), State Key Laboratory of Featured Metal Resources and Advanced Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China. Electronic address: wangnannan@gxu.edu.cn. Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, Materials Interface Foundry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada. Electronic address: yimin.wu@uwaterloo.ca"
Journal Title:J Colloid Interface Sci
Year:2022
Volume:20220609
Issue:
Page Number:363 - 372
DOI: 10.1016/j.jcis.2022.06.037
ISSN/ISBN:1095-7103 (Electronic) 0021-9797 (Linking)
Abstract:"Surface electronic structure of transition metal oxides plays a vital role in determining the catalytic performance. Herein, we present a selective etching strategy to tune the surface cation defect of the CuWO(4) (CW) catalyst for improving the catalytic activity of volatile organic compounds (VOCs). HRTEM, SEM-EDS, EPR, and XPS show that the chelation of metal ions in acetic acid and ammonium hydroxide can help to remove a small number of surface cations in CW to form suitable W defects. Cu L-edge and O K-edge XAS, Raman, and O 1s XPS spectrum illustrate that cation defects can improve the hybrid orbits of metal-oxygen bonds, which increases the activity of surface lattice oxygen and metal sites. In-situ DRIFTS spectra reveal that CW with cation defects can easily adsorb toluene, cleave and oxidize benzene ring, and desorb CO(2) because of more surface dangling bonds and active oxygen species. Therefore, the toluene conversion rates of CW-Aci and CW-Alk are much higher than CW in VOCs degradation and the catalytic performance improved 33 times and 22 times at 200 degrees C, respectively. This study offers a new pathway in engineering surface electronic structure and highlights the interplay between cation defects and active oxygen species"
Keywords:Active oxygen species Cation defects Surface electronic structure Toluene oxidation Transition metal oxides;
Notes:"PubMed-not-MEDLINELi, Zhen Wang, Xiyang Zeng, Minli Chen, Kunyu Cao, Dehua Huang, Yiwei Zhu, Yanqiu Zhang, Wenhua Wang, Nannan Wu, Yimin A eng 2022/06/20 J Colloid Interface Sci. 2022 Nov; 625:363-372. doi: 10.1016/j.jcis.2022.06.037. Epub 2022 Jun 9"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 27-12-2024