Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractIsolation and identification of aroma producing strain with esterification capacity from yellow water    Next AbstractA note on the primary structure and expression of an Erwinia carotovora polygalacturonase-encoding gene (peh1) in Escherichia coli and Saccharomyces cerevisiae »

Appl Microbiol Biotechnol


Title:Co-expression of an Erwinia chrysanthemi pectate lyase-encoding gene (pelE) and an E. carotovora polygalacturonase-encoding gene (peh1) in Saccharomyces cerevisiae
Author(s):Laing E; Pretorius IS;
Address:"Department of Microbiology, University of Stellenbosch, Republic of South Africa"
Journal Title:Appl Microbiol Biotechnol
Year:1993
Volume:39
Issue:2
Page Number:181 - 188
DOI: 10.1007/BF00228603
ISSN/ISBN:0175-7598 (Print) 0175-7598 (Linking)
Abstract:"A pectate lyase (PL)-encoding gene (pelE) from Erwinia chrysanthemi and a polygalacturonase (PG)-encoding gene (peh1) from E. carotovora were each inserted between a novel yeast expression-secretion cassette and a yeast gene terminator, and cloned separately into a yeast-centromeric shuttle vector (YCp50), generating recombinant plasmids pAMS12 and pAMS13. Transcription initiation signals present in the expression-secretion cassette were derived from the yeast alcohol dehydrogenase gene promoter (ADC1P), whereas the transcription termination signals were derived from the yeast tryptophan synthase gene terminator (TRP5T). Secretion of PL and PG was directed by the signal sequence of the yeast mating pheromone alpha-factor (MF alpha 1s). A pectinase cassette comprising ADC1P-MF alpha 1s-pelE-TRP5T and ADC1P-MF alpha 1s-peh1-TRP5T was subcloned into YCp50, generating plasmid pAMS14. Subsequently, the dominant selectable Geneticin G418-resistance (GtR) marker, APH1, inserted between the yeast uridine diphosphoglucose 4-epimerase gene promoter (GAL10P) and yeast orotidine-5'-phosphate carboxylase gene terminator (URA3T), was cloned into pAMS14, resulting in plasmid pAMS15. Plasmids pAMS12, pAMS13 and pAMS14 were transformed into a laboratory strain of Saccharomyces cerevisiae, whereas pAMS15 was stably introduced into two commercial wine yeast strains. DNA-DNA and DNA-RNA hybridization analyses revealed the presence of these plasmids, and the pelE and peh1 transcripts in the yeast transformants, respectively. A polypectate agarose assay indicated the extracellular production of biologically active PL and PG by the S. cerevisiae transformants and confirmed that co-expression of the pelE and peh1 genes synergistically enhanced pectate degradation"
Keywords:"Bacterial Proteins/biosynthesis/*genetics Base Sequence DNA, Recombinant/genetics Enzyme Induction Erwinia/enzymology/*genetics *Gene Expression Regulation, Fungal *Genes, Bacterial Genes, Fungal Molecular Sequence Data Polygalacturonase/biosynthesis/*gen;"
Notes:"MedlineLaing, E Pretorius, I S eng Research Support, Non-U.S. Gov't Germany 1993/05/01 Appl Microbiol Biotechnol. 1993 May; 39(2):181-8. doi: 10.1007/BF00228603"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 26-12-2024