Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractExternal Validation of a Breath-Based Prediction Model for Malignant Pleural Mesothelioma    Next Abstract"Biological activities associated with the volatile compound 2,5-bis(1-methylethyl)-pyrazine" »

Front Oncol


Title:Headspace Volatile Organic Compound Profiling of Pleural Mesothelioma and Lung Cancer Cell Lines as Translational Bridge for Breath Research
Author(s):Janssens E; Mol Z; Vandermeersch L; Lagniau S; Vermaelen KY; van Meerbeeck JP; Walgraeve C; Marcq E; Lamote K;
Address:"Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium. Infla-Med Center of Excellence, University of Antwerp, Antwerp, Belgium. Department of Green Chemistry and Technology, Environmental Organic Chemistry and Technology (EnVOC) Research Group, Ghent University, Ghent, Belgium. Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium. Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium. Tumor Immunology Lab, Ghent University, Ghent, Belgium. Department of Pulmonology and Thoracic Oncology, Antwerp University Hospital, Edegem, Belgium. Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium"
Journal Title:Front Oncol
Year:2022
Volume:20220506
Issue:
Page Number:851785 -
DOI: 10.3389/fonc.2022.851785
ISSN/ISBN:2234-943X (Print) 2234-943X (Electronic) 2234-943X (Linking)
Abstract:"INTRODUCTION: Malignant pleural mesothelioma (MPM) is a lethal cancer for which early-stage diagnosis remains a major challenge. Volatile organic compounds (VOCs) in breath proved to be potential biomarkers for MPM diagnosis, but translational studies are needed to elucidate which VOCs originate from the tumor itself and thus are specifically related to MPM cell metabolism. METHODS: An in vitro model was set-up to characterize the headspace VOC profiles of six MPM and two lung cancer cell lines using thermal desorption-gas chromatography-mass spectrometry. A comparative analysis was carried out to identify VOCs that could discriminate between MPM and lung cancer, as well as between the histological subtypes within MPM (epithelioid, sarcomatoid and biphasic). RESULTS: VOC profiles were identified capable of distinguishing MPM (subtypes) and lung cancer cells with high accuracy. Alkanes, aldehydes, ketones and alcohols represented many of the discriminating VOCs. Discrepancies with clinical findings were observed, supporting the need for studies examining breath and tumor cells of the same patients and studying metabolization and kinetics of in vitro discovered VOCs in a clinical setting. CONCLUSION: While the relationship between in vitro and in vivo VOCs is yet to be established, both could complement each other in generating a clinically useful breath model for MPM"
Keywords:biomarkers headspace analysis lung cancer mesothelioma volatile organic compounds;
Notes:"PubMed-not-MEDLINEJanssens, Eline Mol, Zoe Vandermeersch, Lore Lagniau, Sabrina Vermaelen, Karim Y van Meerbeeck, Jan P Walgraeve, Christophe Marcq, Elly Lamote, Kevin eng Switzerland 2022/05/24 Front Oncol. 2022 May 6; 12:851785. doi: 10.3389/fonc.2022.851785. eCollection 2022"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 27-12-2024