Title: | Enhanced toluene adsorption/desorption dynamic performances over modified USY zeolites after an aqueous ammonia treatment |
Author(s): | Gao S; Liao Y; Zhang Y; Liu Y; Wu Z; |
Address: | "Department of Environmental Engineering, Zhejiang University 866 Yuhangtang Road Hangzhou 310058 P. R. China yueliu@zju.edu.cn +86 87953088 +86 571 87953088. Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control 866 Yuhangtang Road Hangzhou 310058 P. R. China" |
ISSN/ISBN: | 2046-2069 (Electronic) 2046-2069 (Linking) |
Abstract: | "The dynamic adsorption/desorption performances of modified hierarchical USY zeolites treated with an ammonia solution (NH(4)OH) at different concentrations were investigated using gas-phase toluene as an indicator. The characterization results indicated that the ammonia treatment could result in the expansion of microporous channels and the formation of a mesoporous structure without evident decrease in crystallinity. The experiment results regarding dynamic adsorption/desorption performances revealed that the mass transfer resistance of modified USY adsorbents were greatly reduced treating with NH(4)OH. Among the modified samples, the 0.1 mol L(-1) NH(4)OH treated USY adsorbent exhibited large adsorptive capacity and highest desorption rate, which show good cyclic performance that could preserve its adsorbent capacity after 20 cycles. In contrast, pristine USY samples had lost around 28% of the initial adsorption capacity after 20 cycles. Moreover, the NaOH-treated sample showed great crystallinity decline compared to the NH(4)OH-treated samples due to excessive silicon atom leaching from the USY framework, and had lower adsorption capacity under humid conditions. Therefore, NH(4)OH-modified USY zeolites could be promising adsorbents for the adsorption/desorption process of volatile organic compounds (VOCs)" |
Notes: | "PubMed-not-MEDLINEGao, Shan Liao, Yuanru Zhang, Yaoyu Liu, Yue Wu, Zhongbiao eng England 2022/05/03 RSC Adv. 2021 Sep 29; 11(51):32152-32157. doi: 10.1039/d1ra04034k. eCollection 2021 Sep 27" |