Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractIdentification and characterization of terpene synthase genes accounting for volatile terpene emissions in flowers of Freesia x hybrida    Next AbstractMonitoring Volatile Organic Compounds in Different Pear Cultivars during Storage Using HS-SPME with GC-MS »

IEEE Trans Cybern


Title:Adaptive Coordination Ant Colony Optimization for Multipoint Dynamic Aggregation
Author(s):Gao G; Mei Y; Jia YH; Browne WN; Xin B;
Address:
Journal Title:IEEE Trans Cybern
Year:2022
Volume:20220719
Issue:8
Page Number:7362 - 7376
DOI: 10.1109/TCYB.2020.3042511
ISSN/ISBN:2168-2275 (Electronic) 2168-2267 (Linking)
Abstract:"Multipoint dynamic aggregation is a meaningful optimization problem due to its important real-world applications, such as post-disaster relief, medical resource scheduling, and bushfire elimination. The problem aims to design the optimal plan for a set of robots to execute geographically distributed tasks. Unlike the majority of scheduling and routing problems, the tasks in this problem can be executed by multiple robots collaboratively. Meanwhile, the demand of each task changes over time at an incremental rate and is affected by the abilities of the robots executing it. This poses extra challenges to the problem, as it has to consider complex coupled relationships among robots and tasks. To effectively solve the problem, this article develops a new metaheuristic algorithm, called adaptive coordination ant colony optimization (ACO). We develop a novel coordinated solution construction process using multiple ants and pheromone matrices (each robot/ant forages a path according to its own pheromone matrix) to effectively handle the collaborations between robots. We also propose adaptive heuristic information based on domain knowledge to promote efficiency, a pheromone-based repair mechanism to tackle the tight constraints of the problem, and an elaborate local search to enhance the exploitation ability of the algorithm. The experimental results show that the proposed adaptive coordination ACO significantly outperforms the state-of-the-art methods in terms of both effectiveness and efficiency"
Keywords:*Algorithms *Pheromones;
Notes:"MedlineGao, Guanqiang Mei, Yi Jia, Ya-Hui Browne, Will N Xin, Bin eng 2021/01/06 IEEE Trans Cybern. 2022 Aug; 52(8):7362-7376. doi: 10.1109/TCYB.2020.3042511. Epub 2022 Jul 19"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 17-11-2024