Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractGenetic interactions among sex-determining genes in the fern Ceratopteris richardii    Next AbstractGaseous VOCs rapidly modify particulate matter and its biological effects - Part 1: Simple VOCs and model PM »

BMC Plant Biol


Title:Chemical fingerprinting of single glandular trichomes of Cannabis sativa by Coherent anti-Stokes Raman scattering (CARS) microscopy
Author(s):Ebersbach P; Stehle F; Kayser O; Freier E;
Address:"Leibniz-Institut fur Analytische Wissenschaften - ISAS - e.V, 44227, Dortmund, Germany. TU Dortmund, Technische Biochemie, 44227, Dortmund, Germany. felix.stehle@tu-dortmund.de. TU Dortmund, Technische Biochemie, 44227, Dortmund, Germany. Leibniz-Institut fur Analytische Wissenschaften - ISAS - e.V, 44227, Dortmund, Germany. erik.freier@isas.de"
Journal Title:BMC Plant Biol
Year:2018
Volume:20181112
Issue:1
Page Number:275 -
DOI: 10.1186/s12870-018-1481-4
ISSN/ISBN:1471-2229 (Electronic) 1471-2229 (Linking)
Abstract:"BACKGROUND: Cannabis possesses a rich spectrum of phytochemicals i.e. cannabinoids, terpenes and phenolic compounds of industrial and medicinal interests. Most of these high-value plant products are synthesised in the disk cells and stored in the secretory cavity in glandular trichomes. Conventional trichome analysis was so far based on optical microscopy, electron microscopy or extraction based methods that are either limited to spatial or chemical information. Here we combine both information to obtain the spatial distribution of distinct secondary metabolites on a single-trichome level by applying Coherent anti-Stokes Raman scattering (CARS), a microspectroscopic technique, to trichomes derived from sepals of a drug- and a fibre-type. RESULTS: Hyperspectral CARS imaging in combination with a nonlinear unmixing method allows to identify and localise Delta(9)-tetrahydrocannabinolic acid (THCA) in the secretory cavity of drug-type trichomes and cannabidiolic acid (CBDA)/myrcene in the secretory cavity of fibre-type trichomes, thus enabling an easy discrimination between high-THCA and high-CBDA producers. A unique spectral fingerprint is found in the disk cells of drug-type trichomes, which is most similar to cannabigerolic acid (CBGA) and is not found in fibre-type trichomes. Furthermore, we differentiate between different cell types by a combination of CARS with simultaneously acquired two-photon fluorescence (TPF) of chlorophyll a from chloroplasts and organic fluorescence mainly arising from cell walls enabling 3D visualisation of the essential oil distribution and cellular structures. CONCLUSION: Here we demonstrate a label-free and non-destructive method to analyse the distribution of secondary metabolites and distinguish between different cell and chemo-types with high spatial resolution on a single trichome. The record of chemical fingerprints of single trichomes offers the possibility to optimise growth conditions as well as guarantee a direct process control for industrially cultivated medicinal Cannabis plants. Moreover, this method is not limited to Cannabis related issues but can be widely implemented for optimising and monitoring all kinds of natural or biotechnological production processes with simultaneous spatial and chemical information"
Keywords:"Acyclic Monoterpenes Alkenes/chemistry/metabolism Cannabinoids/*chemistry/metabolism Cannabis/*chemistry Dronabinol/chemistry/metabolism Imaging, Three-Dimensional Microscopy, Electron, Scanning Monoterpenes/chemistry/metabolism Oils, Volatile/*metabolism;"
Notes:"MedlineEbersbach, Paul Stehle, Felix Kayser, Oliver Freier, Erik eng 031A360E/Bundesministerium fur Bildung und Forschung/ England 2018/11/14 BMC Plant Biol. 2018 Nov 12; 18(1):275. doi: 10.1186/s12870-018-1481-4"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 19-12-2024