Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractCytogenotoxicity of the aqueous extract of Parquetina nigrescens leaf using Allium cepa assay    Next AbstractDoes Tribolium brevicornis cuticular chemistry deter cannibalism and predation of pupae? »

Protoplasma


Title:Cellular toxicity and DNA damage induced by Newbouldia laevis used for male infertility treatment in prokaryotic and eukaryotic models
Author(s):Alabi OA; Okorie B; Simon-Oke IA; Atanda HC; Olumurewa JAV; Adebo TC;
Address:"Department of Biology, Federal University of Technology, Akure, Ondo State, Nigeria. alabiokunola@yahoo.com. Department of Biotechnology, Federal University of Technology, Akure, Ondo State, Nigeria. alabiokunola@yahoo.com. Department of Biotechnology, Federal University of Technology, Akure, Ondo State, Nigeria. Department of Biology, Federal University of Technology, Akure, Ondo State, Nigeria"
Journal Title:Protoplasma
Year:2023
Volume:20230713
Issue:
Page Number: -
DOI: 10.1007/s00709-023-01880-4
ISSN/ISBN:1615-6102 (Electronic) 0033-183X (Linking)
Abstract:"Leaves of Newbouldia laevis have been extensively used in solving problems associated with infertility and childbirth in many African countries. Yet, information is very limited on the DNA damaging potential of this plant. This study evaluated the cytogenotoxic effect of the aqueous extract of N. laevis leaf using prokaryotic models (Ames Salmonella fluctuation test using TA100 and TA98 strains of Salmonella typhimurium and SOS Chromotest with Escherichia coli PQ37) and eukaryotic model (Allium cepa root cells). Identification of the volatile organic compounds (VOCs) and phytochemical screening of the plant extract were also performed. Onion bulbs were grown on each concentration (1 to 50%; v/v, extract/tap water) of the extract for chromosomal aberrations and root growth analyses. Results of the Ames test indicated that the extract is mutagenic while the SOS Chromotest results showed good complementation to the Ames test results, although the E. coli PQ37 system showed slightly higher sensitivity in the detection of mutagenicity and genotoxicity of the extract. The plant extract was cytotoxic when compared to the control, inducing a significant (p < 0.05) concentration-dependent inhibition of root growth from 5 to 50% concentrations. At 50% concentration, the extract completely inhibited cell division in the A. cepa. Also, chromosomal aberration increased significantly (p < 0.05) in exposed onions from 5 to 20% concentrations. The mutagenicity and cytogenotoxicity recorded in this report were believed to be caused by the presence of VOCs such as 1,2,3-benzene-triol, 1,2-benzenediol, and 5-hydroxymethylfurfural, and alkaloids in the extract an indication of the cytogenotoxicity of the aqueous extract of N. laevis leaf even at low concentration"
Keywords:Allium cepa assay Ames fluctuation test Cytogenotoxicity Newbouldia laevis Volatile organic compounds;
Notes:"PublisherAlabi, Okunola Adenrele Okorie, Benson Simon-Oke, Iyabo A Atanda, Halimat Chisom Olumurewa, John A V Adebo, Taiwo Cosmas eng Austria 2023/07/13 Protoplasma. 2023 Jul 13. doi: 10.1007/s00709-023-01880-4"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 22-11-2024