Title: | Performance of nitrate-dependent anaerobic ferrous oxidizing (NAFO) process: a novel prospective technology for autotrophic denitrification |
Author(s): | Zhang M; Zheng P; Li W; Wang R; Ding S; Abbas G; |
Address: | "Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China. Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China. Electronic address: pzheng@zju.edu.cn" |
DOI: | 10.1016/j.biortech.2014.12.036 |
ISSN/ISBN: | 1873-2976 (Electronic) 0960-8524 (Linking) |
Abstract: | "Nitrate-dependent anaerobic ferrous oxidizing (NAFO) is a valuable biological process, which utilizes ferrous iron to convert nitrate into nitrogen gas, removing nitrogen from wastewater. In this work, the performance of NAFO process was investigated as a nitrate removal technology. The results showed that NAFO system was feasible for autotrophic denitrification. The volumetric loading rate (VLR) and volumetric removal rate (VRR) under steady state were 0.159+/-0.01 kg-N/(m(3) d) and 0.073+/-0.01 kg-N/(m(3) d), respectively. In NAFO system, the effluent pH was suggested as an indicator which demonstrated a good correlation with nitrogen removal. The nitrate concentration was preferred to be less than 130 mg-N/L. Organic matters had little influence on NAFO performance. Abundant iron compounds were revealed to accumulate in NAFO sludge with peak value of 51.73% (wt), and they could be recycled for phosphorus removal, with capacity of 16.57 mg-P/g VS and removal rate of 94.77+/-2.97%, respectively" |
Keywords: | Anaerobiosis *Autotrophic Processes Biotechnology/*methods *Denitrification Hydrogen-Ion Concentration Iron/*metabolism Nitrates/*chemistry/isolation & purification Organic Chemicals/isolation & purification Oxidation-Reduction Phosphorus/isolation & puri; |
Notes: | "MedlineZhang, Meng Zheng, Ping Li, Wei Wang, Ru Ding, Shuang Abbas, Ghulam eng Research Support, Non-U.S. Gov't England 2015/01/13 Bioresour Technol. 2015 Mar; 179:543-548. doi: 10.1016/j.biortech.2014.12.036. Epub 2014 Dec 18" |