Title: | Petrochemical wastewater odor treatment by biofiltration |
Author(s): | Xie B; Liang SB; Tang Y; Mi WX; Xu Y; |
Address: | "Department of Environmental Science and Technology, Shanghai Key Laboratory on Urbanization Ecological Process and Ecorestoration, Tiantong National Station of Forest Ecosystem, East China Normal University, Shanghai, PR China. Bxie@des.ecnu.edu.cn" |
DOI: | 10.1016/j.biortech.2008.10.035 |
ISSN/ISBN: | 1873-2976 (Electronic) 0960-8524 (Linking) |
Abstract: | "The treatment of odorous pollutants by microorganisms on packed waste straw and cortex was investigated at the wastewater treatment plant of the Shanghai petrochemical factory. The removal efficiency of H(2)S, NH(3) and VOCs (volatile organic compounds) reached 98%, 91% and 90%, respectively after operation for one month at an empty bed retention time (EBRT) of 120s. The heterotrophic bacteria were found to be the dominant microorganism in the biofilter, while fungi and actinomycetes were also present. The bacteria were mostly identified as the members of the genus Bacillus (62.5% of cultured bacteria). The single strand conformation polymorphism (SSCP) results revealed that the genus Bacillus and Pseudomonas were the predominant bacteria. The microbial diversity gradually increased as the treatment progressed, which indicated that the microbial community in the biofilter became more stable upon pollutant removal. The scanning electron microscopy (SEM) was performed to evaluate the microorganism growth on the media. It was found that the waste straw and cortex were suitable for microorganism attachment and growth, and may have potential application in odor treatment" |
Keywords: | "Bacteria/growth & development/*metabolism/ultrastructure Biodegradation, Environmental Colony Count, Microbial Culture Media Filtration/*methods *Odorants *Petroleum Polymerase Chain Reaction Polymorphism, Single-Stranded Conformational *Waste Disposal, F;" |
Notes: | "MedlineXie, B Liang, S B Tang, Y Mi, W X Xu, Y eng Research Support, Non-U.S. Gov't England 2008/12/06 Bioresour Technol. 2009 Apr; 100(7):2204-9. doi: 10.1016/j.biortech.2008.10.035. Epub 2008 Dec 3" |