Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous Abstract"[Plant anti-herbivore defense priming: Concept, mechanisms and application.]"    Next AbstractRoom-temperature-ionic-liquid coated graphitized carbons for selective preconcentration of polar vapors »

ACS Appl Mater Interfaces


Title:Self-Reporting Photoluminescent Porous Silicon Microparticles for Drug Delivery
Author(s):Wang J; Kumeria T; Bezem MT; Wang J; Sailor MJ;
Address:"School of Pharmacy, The University of Queensland , 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia. Department of Biomedicine, University of Bergen , Jonas Lies vei 91, N-5020 Bergen, Norway. School of Physics and Electronic Information Engineering, Henan Polytechnic University , Jiaozuo 454000, China"
Journal Title:ACS Appl Mater Interfaces
Year:2018
Volume:20180116
Issue:4
Page Number:3200 - 3209
DOI: 10.1021/acsami.7b09071
ISSN/ISBN:1944-8252 (Electronic) 1944-8244 (Print) 1944-8244 (Linking)
Abstract:"A porous Si (pSi) microparticle-based delivery system is investigated, and the intrinsic luminescence from the particles is employed as a probe to monitor the release of a model protein payload, bovine serum albumin (BSA). The microparticles consist of a core Si skeleton surrounded by a SiO(2) shell. Two types of pSi are tested, one with smaller (10 nm) pores and the other with larger (20 nm) pores. The larger pore material yields a higher mass loading of BSA (3 vs 20%). Two different methods are used to load BSA into these nanostructures: the first involves loading by electrostatic physisorption, and the second involves trapping of BSA in the pSi matrix by local precipitation of magnesium silicate. Protein release from the former system is characterized by a burst release, whereas in the latter system, release is controlled by dissolution of the pSi/magnesium silicate matrix. The protein release characteristics are studied under accelerated (0.1 M aqueous KOH, 21 degrees C) and physiologically relevant (phosphate-buffered saline, pH 7.4, 37 degrees C) conditions, and the near-infrared photoluminescence signal from the pSi skeleton is monitored as a function of time and correlated with protein release and silicon dissolution. The thickness of the Si core and the SiO(2) shell are systematically varied, and it is found that the luminescence signature can be tuned to provide a signal that either scales with protein elution or that changes rapidly near the end of useful life of the delivery system. Although payload release and particle dissolution are not driven by the same mechanism, the correlations between luminescence and payload elution for the various formulations can be used to define design rules for this self-reporting delivery system"
Keywords:Drug Delivery Systems Nanostructures Particle Size Porosity Silicon/*chemistry Silicon Dioxide core-shell fluorescence imaging magnesium silicate nanomaterials oxidation protein therapeutics quantum confinement;
Notes:"MedlineWang, Joanna Kumeria, Tushar Bezem, Maria Teresa Wang, Jian Sailor, Michael J eng T32 CA153915/CA/NCI NIH HHS/ U01 FD005173/FD/FDA HHS/ 2017/12/27 ACS Appl Mater Interfaces. 2018 Jan 31; 10(4):3200-3209. doi: 10.1021/acsami.7b09071. Epub 2018 Jan 16"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 19-12-2024