Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractPredator-induced diel vertical migration inDaphnia: Enrichment and preliminary chemical characterization of a kairomone exuded by fish    Next AbstractToo fresh is unattractive! The attraction of newly emerged Nicrophorus vespilloides females to odour bouquets of large cadavers at various stages of decomposition »

J Breath Res


Title:Precursors for cytochrome P450 profiling breath tests from an in silico screening approach
Author(s):von Grafenstein S; Fuchs JE; Huber MM; Bassi A; Lacetera A; Ruzsanyi V; Troppmair J; Amann A; Liedl KR;
Address:"Department of Theoretical Chemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria"
Journal Title:J Breath Res
Year:2014
Volume:20140918
Issue:4
Page Number:46001 -
DOI: 10.1088/1752-7155/8/4/046001
ISSN/ISBN:1752-7163 (Electronic) 1752-7155 (Linking)
Abstract:"The family of cytochrome P450 enzymes (CYPs) is a major player in the metabolism of drugs and xenobiotics. Genetic polymorphisms and transcriptional regulation give a complex patient-individual CYP activity profile for each human being. Therefore, personalized medicine demands easy and non-invasive measurement of the CYP phenotype. Breath tests detect volatile organic compounds (VOCs) in the patients' exhaled air after administration of a precursor molecule. CYP breath tests established for individual CYP isoforms are based on the detection of (13)CO2 or (14)CO2 originating from CYP-catalyzed oxidative degradation reactions of isotopically labeled precursors.We present an in silico work-flow aiming at the identification of novel precursor molecules, likely to result in VOCs other than CO2 upon oxidative degradation as we aim at label-free precursor molecules. The ligand-based work-flow comprises five parts: (1) CYP profiling was encoded as a decision tree based on 2D molecular descriptors derived from established models in the literature and validated against publicly available data extracted from the DrugBank. (2) Likely sites of metabolism were identified by reactivity and accessibility estimation for abstractable hydrogen radical. (3) Oxidative degradation reactions (O- and N-dealkylations) were found to be most promising in the release of VOCs. Thus, the CYP-catalyzed oxidative degradation reaction was encoded as SMIRKS (a programming language style to implement reactions based on the SMARTS description) to enumerate possible reaction products. (4) A quantitative structure property relation (QSPR) model aiming to predict the Henry constant H was derived from data for 488 organic compounds and identifies potentially VOCs amongst CYP reaction products. (5) A blacklist of naturally occurring breath components was implemented to identify marker molecules allowing straightforward detection within the exhaled air.Evident oxidative degradation reactions served as test case for the screening approach. Comparisons to metabolism data from literature support the results' plausibility. Thus, a large scale screening for potential novel breath test precursor using the presented five stage work-flow is promising"
Keywords:Breath Tests/*methods *Computer Simulation Cytochrome P-450 Enzyme System/*metabolism Decision Trees Exhalation Humans Isoenzymes/metabolism Oxidation-Reduction Volatile Organic Compounds/*analysis Volatilization;
Notes:"Medlinevon Grafenstein, Susanne Fuchs, Julian E Huber, Markus M Bassi, Andrea Lacetera, Alessandra Ruzsanyi, Veronika Troppmair, Jakob Amann, Anton Liedl, Klaus R eng Research Support, Non-U.S. Gov't England 2014/09/23 J Breath Res. 2014 Sep 18; 8(4):046001. doi: 10.1088/1752-7155/8/4/046001"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 24-11-2024