Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractPetromyzonol sulfate and its derivatives: the chemoattractants of the sea lamprey    Next AbstractRespiratory CO(2) Combined With a Blend of Volatiles Emitted by Endophytic Serendipita Strains Strongly Stimulate Growth of Arabidopsis Implicating Auxin and Cytokinin Signaling »

ACS Sens


Title:Porous Nanophotonic Optomechanical Beams for Enhanced Mass Adsorption
Author(s):Venkatasubramanian A; Sauer VTK; Westwood-Bachman JN; Cui K; Xia M; Wishart DS; Hiebert WK;
Address:"Nanotechnology Research Centre , National Research Council of Canada , Edmonton , Alberta T6G 2M9 , Canada. Department of Physics , University of Alberta , Edmonton , Alberta T6G 2E1 , Canada. Department of Biological Sciences , University of Alberta , Edmonton , Alberta T6G 2R3 , Canada. Department of Computing Science , University of Alberta , Edmonton , Alberta T6G 2E8 , Canada"
Journal Title:ACS Sens
Year:2019
Volume:20190423
Issue:5
Page Number:1197 - 1202
DOI: 10.1021/acssensors.8b01366
ISSN/ISBN:2379-3694 (Electronic) 2379-3694 (Linking)
Abstract:"We have developed a porous silicon nanocantilever for a nano-optomechanical system (NOMS) with a universal sensing surface for enhanced sensitivity. Using electron beam lithography, we selectively applied a V(2)O(5)/HF stain etch to the mechanical elements while protecting the silicon-on-insulator photonic ring resonators. This simple, rapid, and electrodeless approach generates tunable device porosity simultaneously with the mechanical release step. By controlling the porous etchant concentration and etch time, the porous etch depth, resonant frequency, and the adsorption surface area could be precisely manipulated. Using this control, cantilever sensors ranging from nonporous to fully porous were fabricated and tested as gas-phase mass sensors of volatile organic compounds coming from a gas chromatography stream. The fully porous cantilever produced a dramatic 10-fold increase in sensing signal and a 6-fold improvement in limit of detection (LOD) compared to an otherwise identical nonporous cantilever. This signal improvement could be separated into mass responsivity increase and adsorption increase components. Allan deviation measurements indicate that a further 4-fold improvement in LOD could be expected upon speeding up characteristic peak response time from 1 s to 50 ms. These results show promise for performance enhancement in nanomechanical sensors for applications in gas sensing, gas chromatography, and mass spectrometry"
Keywords:Adsorption Limit of Detection *Mechanical Phenomena Nanotechnology/*instrumentation *Optical Devices *Photons Porosity Noms gas chromatography gas sensing mass sensing;
Notes:"MedlineVenkatasubramanian, Anandram Sauer, Vincent T K Westwood-Bachman, Jocelyn N Cui, Kai Xia, Mike Wishart, David S Hiebert, Wayne K eng Research Support, Non-U.S. Gov't 2019/04/04 ACS Sens. 2019 May 24; 4(5):1197-1202. doi: 10.1021/acssensors.8b01366. Epub 2019 Apr 23"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 14-06-2024