Title: | "Vehicular Emission Inventory and Reduction Scenario Analysis in the Yangtze River Delta, China" |
Address: | "College of Resources and Environment, Shanxi University of Finance & Economics, Taiyuan 030006, China. School of the Environment, Nanjing University, Nanjing 210046, China. Ministry of Education Key Laboratory for Coastal and Island Development, School of Geographic & Oceanographic Sciences, Nanjing University, Nanjing 210046, China" |
Journal Title: | Int J Environ Res Public Health |
ISSN/ISBN: | 1660-4601 (Electronic) 1661-7827 (Print) 1660-4601 (Linking) |
Abstract: | "Vehicular emissions have become an important source of air pollution, and their effective reduction control is essential to protect the environment. The aim of this study was to establish multi-year vehicular emission inventories for ten important air pollutants and to analyze emission control policy scenarios based on these inventories. The inter-annual emission analysis results showed that the ten pollutant emissions had different change trends during the past decade. The emissions of CO, non-methane volatile organic compounds (NMVOC(S)), NO(x), PM(2.5), PM(10), and CH(4) tended to increase first and then decrease, but the years in which they began to decrease varied; the emissions of CO(2) and NH(3) showed the most significant growth trends, increasing by 567% and 4004% in 2015 compared with 1999, while the emissions of N(2)O and SO(2) showed a general increasing trend and decreased obviously in a certain year. Eight scenarios based on emission inventories were designed; compared with the BAU scenario, the ESV scenario was the most effective policy to control NO(x), PM(2.5), and CH(4) emissions; the radical AER scenario could decrease the vehicular emissions of CO, NMVOCs, PM(10), CO(2), N(2)O, and NH(3); and the RFS scenario could reduce vehicular SO(2) emissions significantly by 93.64%" |
Keywords: | Air Pollutants/*analysis Air Pollution/analysis/*prevention & control China Vehicle Emissions/analysis/*prevention & control Yrd emission inventory life-cycle analysis scenario analysis vehicular pollution; |
Notes: | "MedlineSong, Xiaowei Hao, Yongpei eng Research Support, Non-U.S. Gov't Switzerland 2019/12/05 Int J Environ Res Public Health. 2019 Nov 29; 16(23):4790. doi: 10.3390/ijerph16234790" |