Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous Abstract"Statistical modeling of O(3), NOx, CO, PM(2.5), VOCs and noise levels in commercial complex and associated health risk assessment in an academic institution"    Next AbstractPhysicochemical and toxicological properties of wood smoke particulate matter as a function of wood species and combustion condition »

Front Microbiol


Title:Volatiles Mediated Interactions Between Aspergillus oryzae Strains Modulate Morphological Transition and Exometabolomes
Author(s):Singh D; Lee CH;
Address:"Department of Bioscience and Biotechnology, Konkuk University, Seoul, South Korea"
Journal Title:Front Microbiol
Year:2018
Volume:20180404
Issue:
Page Number:628 -
DOI: 10.3389/fmicb.2018.00628
ISSN/ISBN:1664-302X (Print) 1664-302X (Electronic) 1664-302X (Linking)
Abstract:"Notwithstanding its mitosporic nature, an improbable morpho-transformation state i. e., sclerotial development (SD), is vaguely known in Aspergillus oryzae. Nevertheless an intriguing phenomenon governing mold's development and stress response, the effects of exogenous factors engendering SD, especially the volatile organic compounds (VOCs) mediated interactions (VMI) pervasive in microbial niches have largely remained unexplored. Herein, we examined the effects of intra-species VMI on SD in A. oryzae RIB 40, followed by comprehensive analyses of associated growth rates, pH alterations, biochemical phenotypes, and exometabolomes. We cultivated A. oryzae RIB 40 (S1(VMI): KACC 44967) opposite a non-SD partner strain, A. oryzae (S2: KCCM 60345), conditioning VMI in a specially designed 'twin plate assembly.' Notably, SD in S1(VMI) was delayed relative to its non-conditioned control (S1) cultivated without partner strain (S2) in twin plate. Selectively evaluating A. oryzae RIB 40 (S1(VMI) vs. S1) for altered phenotypes concomitant to SD, we observed a marked disparity for corresponding growth rates (S1(VMI) < S1)(7days), media pH (S1(VMI) > S1)(7days), and biochemical characteristics viz., protease (S1(VMI) > S1)(7days), amylase (S1(VMI) > nS1)(3-7days) , and antioxidants (S1(VMI) > S1)(7days) levels. The partial least squares-discriminant analysis (PLS-DA) of gas chromatography-time of flight-mass spectrometry (GC-TOF-MS) datasets for primary metabolites exhibited a clustered pattern (PLS1, 22.04%; PLS2, 11.36%), with 7 days incubated S1(VMI) extracts showed higher abundance of amino acids, sugars, and sugar alcohols with lower organic acids and fatty acids levels, relative to S1. Intriguingly, the higher amino acid and sugar alcohol levels were positively correlated with antioxidant activity, likely impeding SD in S1(VMI). Further, the PLS-DA (PLS1, 18.11%; PLS2, 15.02%) based on liquid chromatography-mass spectrometry (LC-MS) datasets exhibited a notable disparity for post-SD (9-11 days) sample extracts with higher oxylipins and 13-desoxypaxilline levels in S1(VMI) relative to S1, intertwining Aspergillus morphogenesis and secondary metabolism. The analysis of VOCs for the 7 days incubated samples displayed considerably higher accumulation of C-8 compounds in the headspace of twin-plate experimental sets (S1(VMI):S2) compared to those in non-conditioned controls (S1 and S2-without respective partner strains), potentially triggering altered morpho-transformation and concurring biochemical as well as metabolic states in molds"
Keywords:Aspergillus oryzae VOCs mediated interactions biochemical phenotypes exometabolomes sclerotia development twin-plate assembly;
Notes:"PubMed-not-MEDLINESingh, Digar Lee, Choong H eng Switzerland 2018/04/20 Front Microbiol. 2018 Apr 4; 9:628. doi: 10.3389/fmicb.2018.00628. eCollection 2018"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 17-11-2024