Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous Abstract"Factors controlling volatile organic compounds in dwellings in Melbourne, Australia"    Next Abstract[Analysis of the volatile components in Minnan oolong tea by headspace solid phase microextraction coupled with comprehensive two-dimensional gas chromatography-time of flight mass spectrometry and the application in its variety identification] »

Bioorg Chem


Title:"Characterization of two polyketide synthase genes in Exophiala lecanii-corni, a melanized fungus with bioremediation potential"
Author(s):Cheng Q; Kinney KA; Whitman CP; Szaniszlo PJ;
Address:"Section of Molecular Genetics and Microbiology, The University of Texas at Austin, Austin, TX 78712, USA"
Journal Title:Bioorg Chem
Year:2004
Volume:32
Issue:2
Page Number:92 - 108
DOI: 10.1016/j.bioorg.2003.10.001
ISSN/ISBN:0045-2068 (Print) 0045-2068 (Linking)
Abstract:"Exophiala lecanii-corni has significant bioremediation potential because it can degrade a wide range of volatile organic compounds. In order to identify sites for the insertion of genes that might enhance this potential, a genetic analysis of E. lecanii-corni was undertaken. Two polyketide synthase genes, ElPKS1 and ElPKS2, have now been discovered by a PCR-based strategy. ElPKS1 was isolated by a marker rescue technique. The nucleotide sequence of ElPKS1 consists of a 6576-bp open reading frame encoding a protein with 2192 amino acids, which was interrupted by a 60-bp intron near the 5' end and a 54-bp intron near the 3' end. Sequence analysis, results from disruption experiments, and physiological tests showed that ElPKS1 encoded a polyketide synthase required for melanin biosynthesis. Since ElPKS1 is non-essential, it is a desirable bioengineering target site for the insertion of native and foreign genes. The successful expression of these genes could enhance the bioremediation capability of the organism. ElPKS2 was cloned by colony hybridization screening of a partial genomic library with an ElPKS2 PCR product. ElPKS2 had a 6465-bp open reading frame that encoded 2155 amino acids and had introns of 56, 67, 54, and 71 bp. Although sequence analysis of the derived protein of ElPKS2 confirmed the polyketide synthase nature of its protein product, the function of that product remains unclear"
Keywords:"Amino Acid Sequence Binding Sites Biodegradation, Environmental Cloning, Molecular Exophiala/*enzymology/*genetics/growth & development Genes, Fungal/*genetics Introns/genetics Molecular Sequence Data Multienzyme Complexes/*chemistry/*genetics/metabolism;"
Notes:"MedlineCheng, Qiang Kinney, Kerry A Whitman, Christian P Szaniszlo, Paul J eng Research Support, Non-U.S. Gov't 2004/03/03 Bioorg Chem. 2004 Apr; 32(2):92-108. doi: 10.1016/j.bioorg.2003.10.001"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 19-12-2024