Title: | Recent advances in the abatement of volatile organic compounds (VOCs) and chlorinated-VOCs by non-thermal plasma technology: A review |
Address: | "School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK. School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK. Electronic address: p.t.williams@leeds.ac.uk" |
DOI: | 10.1016/j.chemosphere.2022.136481 |
ISSN/ISBN: | 1879-1298 (Electronic) 0045-6535 (Linking) |
Abstract: | "Most of the volatile organic compounds (VOCs) and especially the chlorinated volatile organic compounds (Cl-VOCs), are regarded as major pollutants due to their properties of volatility, diffusivity and toxicity which pose a significant threat to human health and the eco-environment. Catalytic degradation of VOCs and Cl-VOCs to harmless products is a promising approach to mitigate the issues caused by VOCs and Cl-VOCs. Non-thermal plasma (NTP) assisted catalysis is a promising technology for the efficient degradation of VOCs and Cl-VOCs with higher selectivity under relatively mild conditions compared with conventional thermal catalysis. This review summarises state-of-the-art research of the in plasma catalysis (IPC) of VOCs degradation from three major aspects including: (i) the design of catalysts, (ii) the strategies of deep catalytic degradation and by-products inhibition, and (iii) the fundamental research into mechanisms of NTP activated catalytic VOCs degradation. Particular attention is also given to Cl-VOCs due to their characteristic properties of higher stability and toxicity. The catalysts used for the degradation Cl-VOCs, chlorinated by-products formation and the degradation mechanism of Cl-VOCs are systematically reviewed in each chapter. Finally, a perspective on future challenges and opportunities in the development of NTP assisted VOCs catalytic degradation were discussed" |
Keywords: | Catalysis *Environmental Pollutants/analysis Humans *Plasma Gases *Volatile Organic Compounds By-products Chlorinated volatile organic compounds (Cl-VOCs) In situ characterisation Mechanism Non-thermal plasma (NTP) Volatile organic compounds (VOCs); |
Notes: | "MedlineMu, Yibing Williams, Paul T eng Review England 2022/09/28 Chemosphere. 2022 Dec; 308(Pt 3):136481. doi: 10.1016/j.chemosphere.2022.136481. Epub 2022 Sep 19" |