Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous Abstract"Plant volatiles: production, function and pharmacology"    Next AbstractThe relationship between air pollution and COVID-19-related deaths: An application to three French cities »

J Chem Ecol


Title:"Semiochemicals from herbivory induced cotton plants enhance the foraging behavior of the cotton boll weevil, Anthonomus grandis"
Author(s):Magalhaes DM; Borges M; Laumann RA; Sujii ER; Mayon P; Caulfield JC; Midega CA; Khan ZR; Pickett JA; Birkett MA; Blassioli-Moraes MC;
Address:"Embrapa Genetic Resources and Biotechnology, W5 Norte, CEP 70770-900, Brasilia, DF, Brazil"
Journal Title:J Chem Ecol
Year:2012
Volume:20121121
Issue:12
Page Number:1528 - 1538
DOI: 10.1007/s10886-012-0216-5
ISSN/ISBN:1573-1561 (Electronic) 0098-0331 (Linking)
Abstract:"The boll weevil, Anthonomus grandis, has been monitored through deployment of traps baited with aggregation pheromone components. However, field studies have shown that the number of insects caught in these traps is significantly reduced during cotton squaring, suggesting that volatiles produced by plants at this phenological stage may be involved in attraction. Here, we evaluated the chemical profile of volatile organic compounds (VOCs) emitted by undamaged or damaged cotton plants at different phenological stages, under different infestation conditions, and determined the attractiveness of these VOCs to adults of A. grandis. In addition, we investigated whether or not VOCs released by cotton plants enhanced the attractiveness of the aggregation pheromone emitted by male boll weevils. Behavioral responses of A. grandis to VOCs from conspecific-damaged, heterospecific-damaged (Spodoptera frugiperda and Euschistus heros) and undamaged cotton plants, at different phenological stages, were assessed in Y-tube olfactometers. The results showed that volatiles emitted from reproductive cotton plants damaged by conspecifics were attractive to adults boll weevils, whereas volatiles induced by heterospecific herbivores were not as attractive. Additionally, addition of boll weevil-induced volatiles from reproductive cotton plants to aggregation pheromone gave increased attraction, relative to the pheromone alone. The VOC profiles of undamaged and mechanically damaged cotton plants, in both phenological stages, were not different. Chemical analysis showed that cotton plants produced qualitatively similar volatile profiles regardless of damage type, but the quantities produced differed according to the plant's phenological stage and the herbivore species. Notably, vegetative cotton plants released higher amounts of VOCs compared to reproductive plants. At both stages, the highest rate of VOC release was observed in A. grandis-damaged plants. Results show that A. grandis uses conspecific herbivore-induced volatiles in host location, and that homoterpene compounds, such as (E)-4,8-dimethylnona-1,3,7-triene and (E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene and the monoterpene (E)-ocimene, may be involved in preference for host plants at the reproductive stage"
Keywords:"Animals Behavior, Animal/physiology Chromatography, Gas Gossypium/chemistry/parasitology/*physiology Herbivory Pheromones/*chemistry Terpenes/chemistry Volatile Organic Compounds/*analysis Weevils/*physiology;"
Notes:"MedlineMagalhaes, D M Borges, M Laumann, R A Sujii, E R Mayon, P Caulfield, J C Midega, C A O Khan, Z R Pickett, J A Birkett, M A Blassioli-Moraes, M C eng Research Support, Non-U.S. Gov't 2012/11/28 J Chem Ecol. 2012 Dec; 38(12):1528-38. doi: 10.1007/s10886-012-0216-5. Epub 2012 Nov 21"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 24-11-2024