Title: | "Semi-coke briquettes: towards reducing emissions of primary PM2.5, particulate carbon, and carbon monoxide from household coal combustion in China" |
Author(s): | Li Q; Li X; Jiang J; Duan L; Ge S; Zhang Q; Deng J; Wang S; Hao J; |
Address: | "State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China. School of Chemistry and Environment, Beihang University, Beijing, 100191, China. State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing, 100084, China. College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China" |
ISSN/ISBN: | 2045-2322 (Electronic) 2045-2322 (Linking) |
Abstract: | "Direct household use of unprocessed raw coals for cooking and heating without any air pollution control device has caused serious indoor and outdoor environment problems by emitting particulate matter (PM) and gaseous pollutants. This study examined household emission reduction by switching from unprocessed bituminous and anthracite coals to processed semi-coke briquettes. Two typical stoves were used to test emission characteristics when burning 20 raw coal samples commonly used in residential heating activities and 15 semi-coke briquette samples which were made from bituminous coals by industrial carbonization treatment. The carbonization treatment removes volatile compounds from raw coals which are the major precursors for PM formation and carbon emission. The average emission factors of primary PM2.5, elemental carbon, organic carbon, and carbon monoxide for the tested semi-coke briquettes are much lower than those of the tested raw coals. Based on the current coal consumption data in China, switching to semi-coke briquettes can reduce average emission factors of these species by about 92%, 98%, 91%, and 34%, respectively. Additionally, semi-coke briquette has relatively lower price and higher burnout ratio. The replacement of raw coals with semi-coke briquettes is a feasible path to reduce pollution emissions from household activities" |
Notes: | "PubMed-not-MEDLINELi, Qing Li, Xinghua Jiang, Jingkun Duan, Lei Ge, Su Zhang, Qi Deng, Jianguo Wang, Shuxiao Hao, Jiming eng Research Support, Non-U.S. Gov't England 2016/01/20 Sci Rep. 2016 Jan 19; 6:19306. doi: 10.1038/srep19306" |