Title: | Pervaporation as a Successful Tool in the Treatment of Industrial Liquid Mixtures |
Author(s): | Lakshmy KS; Lal D; Nair A; Babu A; Das H; Govind N; Dmitrenko M; Kuzminova A; Korniak A; Penkova A; Tharayil A; Thomas S; |
Address: | "School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India. St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia" |
ISSN/ISBN: | 2073-4360 (Electronic) 2073-4360 (Linking) |
Abstract: | "Pervaporation is one of the most active topics in membrane research, and it has time and again proven to be an essential component for chemical separation. It has been employed in the removal of impurities from raw materials, separation of products and by-products after reaction, and separation of pollutants from water. Given the global problem of water pollution, this approach is efficient in removing hazardous substances from water bodies. Conventional processes are based on thermodynamic equilibria involving a phase transition such as distillation and liquid-liquid extraction. These techniques have a relatively low efficacy and nowadays they are not recommended because it is not sustainable in terms of energy consumption and/or waste generation. Pervaporation emerged in the 1980s and is now becoming a popular membrane separation technology because of its intrinsic features such as low energy requirements, cheap separation costs, and good quality product output. The focus of this review is on current developments in pervaporation, mass transport in membranes, material selection, fabrication and characterization techniques, and applications of various membranes in the separation of chemicals from water" |
Keywords: | pervaporation volatile organic compounds wastewater; |
Notes: | "PubMed-not-MEDLINELakshmy, Kadavil Subhash Lal, Devika Nair, Anandu Babu, Allan Das, Haritha Govind, Neethu Dmitrenko, Mariia Kuzminova, Anna Korniak, Aleksandra Penkova, Anastasia Tharayil, Abhimanyu Thomas, Sabu eng Review Switzerland 2022/04/24 Polymers (Basel). 2022 Apr 14; 14(8):1604. doi: 10.3390/polym14081604" |