Title: | Preparation of graphitic carbon nitride (g-C(3)N(4))/WO(3) composites and enhanced visible-light-driven photodegradation of acetaldehyde gas |
Author(s): | Katsumata K; Motoyoshi R; Matsushita N; Okada K; |
Address: | "Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama, Kanagawa 226-8503, Japan. katsumata.k.ab@m.titech.ac.jp" |
DOI: | 10.1016/j.jhazmat.2013.05.058 |
ISSN/ISBN: | 1873-3336 (Electronic) 0304-3894 (Linking) |
Abstract: | "Novel visible-light-driven graphitic carbon nitride (g-C(3)N(4))/WO(3) composite photocatalysts were prepared, and the acetaldehyde (CH(3)CHO) degradation activity of these composites was evaluated. The prepared g-C(3)N(4)/WO(3) composites were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet-visible diffuse reflection spectroscopy (UV-vis), and the N(2) gas adsorption Brunauer-Emmett-Teller (BET) method (N(3)-BET). The WO(3) particles, which were 100-300 nm in size, were in direct contact with the g-C(3)N(4) sheet surface. The optical band gap and specific surface area of the g-C(3)N(4)/WO(3) composites were in the range of 2.65-2.75 eV and 4-7 m(2)/g, respectively. The g-C(3)N(4)/WO(3) composites exhibited higher activity for the photodegradation of CH(3)CHO under visible light irradiation compared to g-C(3)N(4). The optimal WO(3) content for the CH(3)CHO photodegradation activity of the heterojunction structures was determined. The synergistic effect of g-C(3)N(4) and WO(3) was considered to lead to improved photogenerated carrier separation. A possible degradation mechanism of CH(3)CHO over the g-C(3)N(4)/WO(3) composite photocatalyst under visible light irradiation was proposed. These results should usefully expand applications of g-C(3)N(4) as a visible-light-driven photocatalyst" |
Keywords: | "Acetaldehyde/*analysis/chemistry Adsorption Air Pollutants Catalysis Environmental Pollutants Gases Graphite/*chemistry Industry Microscopy, Electron, Scanning Microscopy, Electron, Transmission Nitriles/*chemistry *Photolysis Semiconductors Spectrophotom;" |
Notes: | "MedlineKatsumata, Ken-ichi Motoyoshi, Ryosuke Matsushita, Nobuhiro Okada, Kiyoshi eng Research Support, Non-U.S. Gov't Netherlands 2013/07/03 J Hazard Mater. 2013 Sep 15; 260:475-82. doi: 10.1016/j.jhazmat.2013.05.058. Epub 2013 Jun 7" |