Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous Abstract"Volatile organic compounds in water matrices: Recent progress, challenges, and perspective"    Next Abstract"Porous and single-crystalline ZnO nanobelts: fabrication with annealing precursor nanobelts, and gas-sensing and optoelectronic performance" »

Environ Sci Technol


Title:Space-Based Observations of Ozone Precursors within California Wildfire Plumes and the Impacts on Ozone-NO(x)-VOC Chemistry
Author(s):Jin X; Fiore AM; Cohen RC;
Address:"Department of Environmental Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, United States. Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States. Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States. Department of Earth and Planetary Sciences, University of California Berkeley, Berkeley, California 94720, United States"
Journal Title:Environ Sci Technol
Year:2023
Volume:20230913
Issue:39
Page Number:14648 - 14660
DOI: 10.1021/acs.est.3c04411
ISSN/ISBN:1520-5851 (Electronic) 0013-936X (Linking)
Abstract:"The frequency of wildfires in the western United States has escalated in recent decades. Here we examine the impacts of wildfires on ground-level ozone (O(3)) precursors and the O(3)-NO(x)-VOC chemistry from the source to downwind urban areas. We use satellite retrievals of nitrogen dioxide (NO(2)) and formaldehyde (HCHO, an indicator of VOC) from the Tropospheric Monitoring Instrument (TROPOMI) to track the evolution of O(3) precursors from wildfires over California from 2018 to 2020. We improved these satellite retrievals by updating the a priori profiles and explicitly accounting for the effects of smoke aerosols. TROPOMI observations reveal that the extensive and intense fire smoke in 2020 led to an overall increase in statewide annual average HCHO and NO(2) columns by 16% and 9%. The increase in the level of NO(2) offsets the anthropogenic NO(x) emission reduction from the COVID-19 lockdown. The enhancement of NO(2) within fire plumes is concentrated near the regions actively burning, whereas the enhancement of HCHO is far-reaching, extending from the source regions to urban areas downwind due to the secondary production of HCHO from longer-lived VOCs such as ethene. Consequently, a larger increase in NO(x) occurs in NO(x)-limited source regions, while a greater increase in HCHO occurs in VOC-limited urban areas, both contributing to more efficient O(3) production"
Keywords:Humans *Ozone/analysis *Air Pollutants/analysis *Wildfires Nitrogen Dioxide *covid-19 Communicable Disease Control Respiratory Aerosols and Droplets Smoke California Environmental Monitoring *Volatile Organic Compounds/analysis California wildfires Tropom;
Notes:"MedlineJin, Xiaomeng Fiore, Arlene M Cohen, Ronald C eng Research Support, U.S. Gov't, Non-P.H.S. 2023/09/13 Environ Sci Technol. 2023 Oct 3; 57(39):14648-14660. doi: 10.1021/acs.est.3c04411. Epub 2023 Sep 13"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 19-12-2024