Title: | Volatile organic compound patterns predict fungal trophic mode and lifestyle |
Author(s): | Guo Y; Jud W; Weikl F; Ghirardo A; Junker RR; Polle A; Benz JP; Pritsch K; Schnitzler JP; Rosenkranz M; |
Address: | "Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum Munchen, Neuherberg, Germany. Institute of Biochemical Plant Pathology, Helmholtz Zentrum Munchen, Neuherberg, Germany. Evolutionary Ecology of Plants, Department of Biology, Philipps University of Marburg, Marburg, Germany. Department of Biosciences, University of Salzburg, Salzburg, Austria. Forest Botany and Tree Physiology, University of Gottingen, Gottingen, Germany. Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China. Holzforschung Munchen, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany. Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum Munchen, Neuherberg, Germany. maaria.rosenkranz@helmholtz-muenchen.de" |
DOI: | 10.1038/s42003-021-02198-8 |
ISSN/ISBN: | 2399-3642 (Electronic) 2399-3642 (Linking) |
Abstract: | "Fungi produce a wide variety of volatile organic compounds (VOCs), which play central roles in the initiation and regulation of fungal interactions. Here we introduce a global overview of fungal VOC patterns and chemical diversity across phylogenetic clades and trophic modes. The analysis is based on measurements of comprehensive VOC profiles of forty-three fungal species. Our data show that the VOC patterns can describe the phyla and the trophic mode of fungi. We show different levels of phenotypic integration (PI) for different chemical classes of VOCs within distinct functional guilds. Further computational analyses reveal that distinct VOC patterns can predict trophic modes, (non)symbiotic lifestyle, substrate-use and host-type of fungi. Thus, depending on trophic mode, either individual VOCs or more complex VOC patterns (i.e., chemical communication displays) may be ecologically important. Present results stress the ecological importance of VOCs and serve as prerequisite for more comprehensive VOCs-involving ecological studies" |
Keywords: | Fungi/classification/genetics/*metabolism Gas Chromatography-Mass Spectrometry/methods *Host-Pathogen Interactions Mass Spectrometry/methods Phylogeny Plant Roots/microbiology Plant Shoots/microbiology Species Specificity *Symbiosis Volatile Organic Compo; |
Notes: | "MedlineGuo, Yuan Jud, Werner Weikl, Fabian Ghirardo, Andrea Junker, Robert R Polle, Andrea Benz, J Philipp Pritsch, Karin Schnitzler, Jorg-Peter Rosenkranz, Maaria eng Research Support, Non-U.S. Gov't England 2021/06/05 Commun Biol. 2021 Jun 3; 4(1):673. doi: 10.1038/s42003-021-02198-8" |