Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractVapour permeation measurements with free-standing nanomembranes    Next AbstractThe zebrafish tail immobilization (ZTI) test as a new tool to assess stress-related behavior and a potential screen for drugs affecting despair-like states »

Ecotoxicol Environ Saf


Title:Variation in copper effects on kairomone-mediated responses in Daphnia pulicaria
Author(s):DeMille CM; Arnott SE; Pyle GG;
Address:"Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6. Electronic address: Colleen.DeMille@ontario.ca. Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6. Electronic address: arnotts@queensu.ca. Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4"
Journal Title:Ecotoxicol Environ Saf
Year:2016
Volume:20160113
Issue:
Page Number:264 - 272
DOI: 10.1016/j.ecoenv.2015.12.038
ISSN/ISBN:1090-2414 (Electronic) 0147-6513 (Linking)
Abstract:"Chemical signals play an integral role in many predator-prey relationships but their effectiveness can be altered by environmental conditions. Prey species can detect predator kairomones, which induce anti-predator defenses. An example of this predator-prey relationship exists between Daphnia spp. and Chaoborus spp.; however, when living in water contaminated with low concentrations of copper (Cu) Daphnia can fail to respond to Chaoborus kairomone and, in turn, become more susceptible to predation. This has implications for Daphnia living in regions with Cu contamination, such as areas where mining activity has resulted in increased levels of metals in the surrounding lakes. We examined kairomone-mediated responses of multiple Daphnia pulicaria clones obtained from 8 lakes in Ontario, Canada, in the absence and presence of environmentally-relevant Cu concentrations. Life history traits and morphological anti-predator defenses were assessed using neonates collected from mothers that were exposed to kairomone and Cu treatments. We found that kairomone-mediated responses and Cu-tolerance varied among D. pulicaria clones. Clones exposed to kairomone, in the absence of Cu additions, had diverse responses, including larger neonates, delayed reproduction, or altered brood size relative to no-kairomone controls. These kairomone-induced responses act as antipredator defense strategies against Chaoborus by preventing predation or stabilizing population growth. When exposed to Cu, two clones were able to respond to kairomone, while four clones no longer induced a response to kairomone. This variation in non-lethal effects of Cu on aquatic organisms suggests that toxicity tests should incorporate multiple genotypes and include predator-prey interactions"
Keywords:"Animals Copper/*toxicity Daphnia/*drug effects/growth & development/physiology Diptera/physiology Ontario Pheromones/*pharmacology Reproduction/drug effects Water Pollutants, Chemical/*toxicity Intraspecific variation Life-history responses Metal contamin;"
Notes:"MedlineDeMille, C M Arnott, S E Pyle, G G eng Research Support, Non-U.S. Gov't Netherlands 2016/01/17 Ecotoxicol Environ Saf. 2016 Apr; 126:264-272. doi: 10.1016/j.ecoenv.2015.12.038. Epub 2016 Jan 13"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 01-07-2024