Title: | Optimization of a Solid-Phase Microextraction method for the Gas Chromatography-Mass Spectrometry analysis of blackberry (Rubus ulmifolius Schott) fruit volatiles |
Author(s): | D'Agostino MF; Sanz J; Sanz ML; Giuffre AM; Sicari V; Soria AC; |
Address: | "Universita degli Studi Mediterranea di Reggio Calabria, Dipartimento AGRARIA, Contrada Melissari, 89124 Reggio Calabria, Italy. Instituto de Quimica Organica General (CSIC), Dpto. Analisis Instrumental y Quimica Ambiental, Juan de la Cierva, 3, 28006 Madrid, Spain. Instituto de Quimica Organica General (CSIC), Dpto. Analisis Instrumental y Quimica Ambiental, Juan de la Cierva, 3, 28006 Madrid, Spain. Electronic address: acsoria@iqog.csic.es" |
DOI: | 10.1016/j.foodchem.2015.01.010 |
ISSN/ISBN: | 1873-7072 (Electronic) 0308-8146 (Linking) |
Abstract: | "A Solid-Phase Microextraction method for the Gas Chromatography-Mass Spectrometry analysis of blackberry (Rubus sp.) volatiles has been fully optimized by means of a Box-Behnken experimental design. The optimized operating conditions (Carboxen/Polydimethylsiloxane fiber coating, 66 degrees C, 20 min equilibrium time and 16 min extraction time) have been applied to the characterization for the first time of the volatile composition of Rubus ulmifolius Schott blackberries collected in Italy and Spain. A total of 74 volatiles of different functionality were identified; esters and aliphatic alcohols were the predominant classes in both sample types. Methylbutanal (2.02-25.70%), ethanol (9.84-68.21%), 2,3-butanedione (2.31-14.71%), trans-2-hexenal (0.49-17.49%), 3-hydroxy-2-butanone (0.08-7.39%), 1-hexanol (0.56-16.39%), 1-octanol (0.49-10.86%) and methylbutanoic acid (0.53-21.48%) were the major compounds in most blackberries analyzed. Stepwise multiple regression analysis of semiquantitative data showed that only two variables (ethyl decanoate and ethyl acetate) were necessary for a successful differentiation of blackberries according to their harvest location" |
Keywords: | Fruit/chemistry Gas Chromatography-Mass Spectrometry/*methods Rubus/*chemistry Solid Phase Microextraction/*methods Volatile Organic Compounds/*chemistry Blackberry (Rubus ulmifolius Schott) Experimental design Gas Chromatography-Mass Spectrometry (GC-MS); |
Notes: | "MedlineD'Agostino, M F Sanz, J Sanz, M L Giuffre, A M Sicari, V Soria, A C eng Research Support, Non-U.S. Gov't England 2015/02/24 Food Chem. 2015 Jul 1; 178:10-7. doi: 10.1016/j.foodchem.2015.01.010. Epub 2015 Jan 10" |