Title: | On-line removal of volatile fatty acids from CELSS anaerobic bioreactor via nanofiltration |
Address: | "University of Puerto Rico, Mayaguez Campus, Chemical Engineering Department, Mayaguez, PR 00681. gu_colon@rumac.uprm.edu" |
ISSN/ISBN: | 1069-9422 (Print) 1069-9422 (Linking) |
Abstract: | "The CELSS resource recovery system, which is a waste-processing system, uses aerobic and anaerobic bioreactors to recover plants nutrients and secondary foods from the inedible biomass. The anaerobic degradation of the inedible biomass, by means of culture of rumen bacteria, generates organic compounds such as volatile fatty acids (VFA) (acetic, propionic, butyric) and ammonia. The presence of VFA in the bioreactor medium at fairly low concentrations decreases the microbial population's metabolic reactions due to end-product inhibition. Technologies to remove VFA continuously from the bioreactor are of high interest. Several candidate technologies were analyzed, such as organic solvent liquid-liquid extraction, adsorption and/or ion exchange, dialysis, electrodialysis, and pressure-driven membrane separation processes. The proposed technique for the on-line removal of VFA from the anaerobic bioreactor was a nanofiltration membrane recycle bioreactor. In order to establish the nanofiltration process performance variables before coupling it to the bioreactor, a series of experiments was carried out using a 10,000 molecular weight cutoff (MWCO) tubular ceramic membrane module. The variables studied were the bioreactor slurry permeation characteristics, such as: the permeate flux, VFA and nutrient removal rates as a function of applied transmembrane pressure, fluid recirculation velocity, suspended matter concentration, and process operating time. Results indicated that the permeate flux, VFA, and nutrients removal rates are directly proportional to the fluid recirculation velocity in the range between 0.6 and 1.0 m/s, applied pressure when these are lower than 1.5 bar, and inversely proportional to the total suspended solids concentration in the range between 23,466 and 34,880 mg/L. At applied pressure higher than 1.5 bar the flux is not more linearly dependent due to concentration polarization and fouling effects over the membrane surface. It was also found that the permeate flux declines rapidly during the first 5-8 h, and then levels off with a diminishing rate of flux decay" |
Keywords: | "Anaerobiosis Biodegradation, Environmental Biomass *Bioreactors *Ecological Systems, Closed Evaluation Studies as Topic Fatty Acids, Volatile/analysis/*chemistry Life Support Systems Membranes, Artificial Pressure Ultrafiltration/*methods Waste Management;" |
Notes: | "MedlineColon, G Sager, J C eng 2001/10/26 Life Support Biosph Sci. 2001; 7(4):291-9" |