Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractE-cigarettes induce toxicological effects that can raise the cancer risk    Next AbstractLC-MS and GC-MS Data Fusion Metabolomics Profiling Coupled with Multivariate Analysis for the Discrimination of Different Parts of Faustrime Fruit and Evaluation of Their Antioxidant Activity »

Water Res


Title:Electrochemical oxidation of phenolic wastes with boron-doped diamond anodes
Author(s):Canizares P; Lobato J; Paz R; Rodrigo MA; Saez C;
Address:"Department of Chemical Engineering, Facultad de Ciencias Quimicas, Universidad de Castilla-La Mancha, Campus Universitario s/n, 13071 Ciudad Real, Spain"
Journal Title:Water Res
Year:2005
Volume:39
Issue:12
Page Number:2687 - 2703
DOI: 10.1016/j.watres.2005.04.042
ISSN/ISBN:0043-1354 (Print) 0043-1354 (Linking)
Abstract:"The electrochemical oxidation of several phenolic aqueous wastes has been studied using a bench-scale plant with a single-compartment electrochemical flow cell. Boron-doped diamond materials were used as the anode. Complete mineralization of the waste was obtained in the treatment of phenols not substituted with chlorine or nitrogen. Chlorinated phenolic compounds were transformed into carbon dioxide; volatile organochlorinated compounds and nitro-substituted phenols deal with the formation of polymeric materials. These polymeric materials behave as final products or treatment intermediates depending on the nature of the initial pollutant. The removal of nitro- or the chloro-group from the phenolic molecule seems to be one of the first stages in the treatment. Non-nitrogenated or chlorinated carboxylic acids have been found to be the main intermediates in the electrochemical oxidation of all the phenolic compounds tested. The efficiencies of the process depend strongly on the concentration of organic pollutants and on their nature, and not on the current density, at least in the operation range studied"
Keywords:"Boron/*chemistry Carbon/chemistry Chlorine Compounds/chemistry Diamond Electrochemistry Electrodes Nitro Compounds/chemistry Organic Chemicals/chemistry Oxidation-Reduction Oxygen/chemistry/metabolism Phenols/*chemistry Polymers/chemistry Waste Disposal, ;"
Notes:"MedlineCanizares, P Lobato, J Paz, R Rodrigo, M A Saez, C eng Research Support, Non-U.S. Gov't England 2005/06/28 Water Res. 2005 Jul; 39(12):2687-703. doi: 10.1016/j.watres.2005.04.042"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 25-11-2024