Title: | Prediction study on the distribution of polycyclic aromatic hydrocarbons and their halogenated derivatives in the atmospheric particulate phase |
Author(s): | Cao S; Hu J; Wu Q; Wei X; Ma G; Yu H; |
Address: | "Zhejiang Normal University, College of Geography and Environmental Sciences, Jinhua 321004, China. Zhejiang Normal University, College of Geography and Environmental Sciences, Jinhua 321004, China. Electronic address: yhy@zjnu.cn" |
DOI: | 10.1016/j.ecoenv.2022.114111 |
ISSN/ISBN: | 1090-2414 (Electronic) 0147-6513 (Linking) |
Abstract: | "Polycyclic aromatic hydrocarbons (PAHs) and their halogenated derivatives (X-PAHs), which generally produced from photochemical and thermal reactions of parent PAHs, widely exist in the environment. They are semi-volatile organic chemicals (SVOCs) and the partitioning between gas/particulate phases affects their environmental migration, transformation and fate, which further impacts their toxicity and health risk to human. However, there is a large data missing of the experimental distribution ratio in the atmospheric particulate phase (f), especially for X-PAHs. In this study, we first checked the correlation between experimental f values of 53 PAH derivatives and their octanol-air partitioning coefficients (log K(OA)), which is frequently used to characterize the distribution of chemicals in organic phase, and yielded R(2) = 0.803. Then, quantum chemical descriptors derived from molecular structural optimization by M06-2X/6-311 +G (d,p) method were further employed to develop Quantitative Structure-Property Relationship (QSPR) model. The model contains two descriptors, the average molecular polarizability (alpha) and the equilibrium parameter of molecular electrostatic potential (tau), and yields better performance with R(2) = 0.846 and RMSE = 0.122. The mechanism analysis and validation results by different strategies prove that the model can reveal the molecular properties that dominate the distribution between gas and particulate phases and it can be used to predict f values of other PAHs/X-PAHs, providing basic data for their environmental ecological risk assessment" |
Keywords: | *Air Pollutants/analysis Coal/analysis Dust/analysis Environmental Monitoring/methods Humans Octanols/analysis Particulate Matter/analysis *Polycyclic Aromatic Hydrocarbons/analysis *Volatile Organic Compounds/analysis Distribution ratio (f) Log K(OA) Mol; |
Notes: | "MedlineCao, Siqi Hu, Jue Wu, Qiang Wei, Xiaoxuan Ma, Guangcai Yu, Haiying eng Netherlands 2022/09/27 Ecotoxicol Environ Saf. 2022 Oct 15; 245:114111. doi: 10.1016/j.ecoenv.2022.114111. Epub 2022 Sep 22" |