Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous Abstract"Transcriptome analysis in the beet webworm, Spoladea recurvalis (Lepidoptera: Crambidae)"    Next AbstractTreatment of volatile organic compounds from polyurethane and epoxy manufacture by a trickle-bed air biofilter »

J Bacteriol


Title:Quorum Sensing Regulation of a Major Facilitator Superfamily Transporter Affects Multiple Streptococcal Virulence Factors
Author(s):Chang JC; Wilkening RV; Rahbari KM; Federle MJ;
Address:"Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, Illinois, USA. Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, USA"
Journal Title:J Bacteriol
Year:2022
Volume:20220808
Issue:9
Page Number:e0017622 -
DOI: 10.1128/jb.00176-22
ISSN/ISBN:1098-5530 (Electronic) 0021-9193 (Print) 0021-9193 (Linking)
Abstract:"Cell-cell signaling mediated by Rgg-family transcription factors and their cognate pheromones is conserved in Firmicutes, including all streptococci. In Streptococcus pyogenes, or group A strep (GAS), one of these systems, the Rgg2/3 quorum sensing (QS) system, has been shown to regulate phenotypes, including cellular aggregation and biofilm formation, lysozyme resistance, and macrophage immunosuppression. Here, we show the abundance of several secreted virulence factors (streptolysin O, SpyCEP, and M protein) decreases upon induction of QS. The main mechanism underlying the changes in protein levels appears to be transcriptional, occurs downstream of the QS circuit, and is dysregulated by the deletion of an Rgg2/3 QS-regulated major facilitator superfamily (MFS) transporter. Additionally, we identify this MFS transporter as the factor responsible for a previously observed increase in aminoglycoside sensitivity in QS-induced cells. IMPORTANCE The production of virulence factors is a tightly regulated process in bacterial pathogens. Efforts to elucidate the mechanisms by which genes are regulated may advance the understanding of factors influencing pathogen behavior or cellular physiology. This work finds expression of a major facilitator superfamily (MFS) transporter, which is governed by a quorum sensing (QS) system, impacts the expression of multiple virulence factors and accounts for QS-dependent antibiotic susceptibility. Although the mechanism underlying this effect is not clear, MFS orthologs with high sequence similarity from S. pneumoniae and S. porcinus were unable to substitute indicating substrate specificity of the GAS MFS gene. These findings demonstrate novel associations between expression of a transmembrane transporter and virulence factor expression and aminoglycoside transport"
Keywords:"Aminoglycosides/pharmacology Anti-Bacterial Agents/pharmacology Gene Expression Regulation, Bacterial Humans Membrane Transport Proteins/genetics/metabolism Muramidase/metabolism Pheromones/metabolism *Quorum Sensing/physiology *Streptococcal Infections T;"
Notes:"MedlineChang, Jennifer C Wilkening, Reid V Rahbari, Kate M Federle, Michael J eng Research Support, N.I.H., Extramural 2022/08/09 J Bacteriol. 2022 Sep 20; 204(9):e0017622. doi: 10.1128/jb.00176-22. Epub 2022 Aug 8"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 19-12-2024