Title: | Double-UV Photoionizaion Detector with Graphene Oxide-Coated Electrodes |
Author(s): | Zhou Q; Zhang X; Ma X; Zhang S; |
Address: | "School of Electrical Engineering and automation, Tianjin University of Technology and Education, Tianjin 300222, China. Tianjin Key Laboratory of Information Sensing and Intelligent Control, Tianjin 300222, China. School of Mechanical Engineering, Tianjin University of Technology and Education, Tianjin 300130, China. School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin 300130, China. School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China" |
ISSN/ISBN: | 1176-2322 (Print) 1754-2103 (Electronic) 1176-2322 (Linking) |
Abstract: | "The structure of a photoionization detector was optioned and researched. In order to solve the problem of the photoionization detector' lamp surface residue interference, a new structure of the self-cleaning double-UV detector was adopted. At the same time, the air flow field of the detector was simulated by the finite element method. Through analyzing the results of the simulation experiment, further optimization of the gas channel for the microdetector was carried out, and the ionization chamber with axial flow structure was finally chosen. The new nanomaterial, graphene oxide was used to modify the surface of the collector plate of detector to improve the gas sensitivity and sensitivity of the photoionization detector. Through the experimental analysis, the performance indexes of detector were described in detail. The minimum detection limit of the detector is 2.5 x 10(-7). The linearity response of the detector was analyzed, and the linear correlation coefficient reaches 0.993. The experimental results show that the double-UV detector can improve the overall gas sensing characteristics and provide an ideal detection unit for volatile organic compound (VOC) gas detection" |
Notes: | "PubMed-not-MEDLINEZhou, Qi Zhang, Xu Ma, Xu Zhang, Sixiang eng Egypt 2022/08/02 Appl Bionics Biomech. 2022 Jul 19; 2022:4330518. doi: 10.1155/2022/4330518. eCollection 2022" |