Title: | Methods to assess carbonaceous aerosol sampling artifacts for IMPROVE and other long-term networks |
Author(s): | Watson JG; Chow JC; Chen LW; Frank NH; |
Address: | "Division of Atmospheric Sciences, Desert Research Institute, Reno, NV 89512, USA. john.watson@dri.edu" |
DOI: | 10.3155/1047-3289.59.8.898 |
ISSN/ISBN: | 1096-2247 (Print) 1096-2247 (Linking) |
Abstract: | "Volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs) adsorb to quartz fiber filters during fine and coarse particulate matter (PM2.5 and PM10, respectively) sampling for thermal/optical carbon analysis that measures organic carbon (OC) and elemental carbon (EC). Particulate SVOCs can evaporate after collection, with a small portion adsorbed within the filter. Adsorbed organic gases are measured as particulate OC, so passive field blanks, backup filters, prefilter organic denuders, and regression methods have been applied to compensate for positive OC artifacts in several long-term chemical speciation networks. Average backup filter OC levels from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network were approximately 19% higher than field blank values. This difference is within the standard deviation of the average and likely results from low SVOC concentrations in the rural to remote environments of most IMPROVE sites. Backup filters from an urban (Fort Meade, MD) site showed twice the OC levels of field blanks. Sectioning backup filters from top to bottom showed nonuniform OC densities within the filter, contrary to the assumption that VOCs and SVOCs on a backup filter equal those on the front filter. This nonuniformity may be partially explained by evaporation and readsorption of vapors in different parts of the front and backup quartz fiber filter owing to temperature, relative humidity, and ambient concentration changes throughout a 24-hr sample duration. OC-PM2.5 regression analysis and organic denuder approaches demonstrate negative sampling artifact from both Teflon membrane and quartz fiber filters" |
Keywords: | Adsorption Aerosols/*analysis/chemistry Air Pollutants/*analysis/chemistry Carbon/*analysis Environmental Monitoring/*methods Filtration Particulate Matter/*analysis/chemistry Polytetrafluoroethylene/chemistry Quartz/chemistry Regression Analysis United S; |
Notes: | "MedlineWatson, John G Chow, Judith C Chen, L W Antony Frank, Neil H eng Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. 2009/09/05 J Air Waste Manag Assoc. 2009 Aug; 59(8):898-911. doi: 10.3155/1047-3289.59.8.898" |