Title: | Decomposition kinetics and postmortem production of hydrogen sulfide and its metabolites |
Author(s): | Wang R; Fan Z; Wei Z; Wang L; Wang T; Li W; Ma D; Guo Z; Yun K; |
Address: | "School of Forensic Medicine, Shanxi Medical University, Jinzhong 030600, Shanxi, China. School of Forensic Medicine, Shanxi Medical University, Jinzhong 030600, Shanxi, China; Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong 030600, Shanxi, China. Shanghai Key Laboratory of Forensic Medicine, Key Laboratory of Forensic Science, Ministry of Justice, Shanghai Forensic Service Platform, Academy of Forensic Science, 200063 Shanghai, China. School of Forensic Medicine, Shanxi Medical University, Jinzhong 030600, Shanxi, China; Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong 030600, Shanxi, China. Electronic address: yunkeming5142@163.com" |
DOI: | 10.1016/j.forsciint.2022.111426 |
ISSN/ISBN: | 1872-6283 (Electronic) 0379-0738 (Linking) |
Abstract: | "BACKGROUND: Hydrogen sulfide (H(2)S), an endogenous gas, can also be generated from organics putrefaction. It is difficult for suspected cases of H(2)S poisoning to determine whether H(2)S in specimens is ingested by antemortem poisoning or generated from organics putrefaction. The aim of this study was to find the biomarkers of acute H(2)S poisoning via comparing the concentrations of H(2)S and its metabolites over time in specimens. METHODS: The H(2)S-spiked blood and blank blood group were established. The decomposition kinetics and the postmortem production of H(2)S were studied due to organics putrefaction. The specimens were placed under 4 conditions of 37, 20, 4 and - 20 ?SG. The content of H(2)S in specimens was quantified by gas chromatography-mass spectrometry, and the contents of its metabolites (thiosulfate and trimethylsulfonium) were measured by liquid chromatography-mass spectrometry, and the variation of its concentration was evaluated. RESULTS: In H(2)S-spiked blood, H(2)S decreased sharply in the initial stage at 37, 20 and 4 degrees C, and increased first and then decreased later; but it was relatively stable at - 20 degrees C. In spiked blood, thiosulfate was 9-fold higher than endogenous concentrations, which increased at first and then decreased during storage. Except for thiosulfate at 37 degrees C, H(2)S and thiosulfate in blank blood both increased at first and then decreased in storage; but trimethylsulfonium (TMS) gradually decreased over time in both groups. CONCLUSIONS: Thiosulfate is a reliable biomarker of acute H(2)S poisoning at - 20?SG within 7 days. But H(2)S, because of instability and volatility, is not an ideal poisoning marker. TMS is not an appropriate biomarker due to extremely low concentration in blood" |
Keywords: | *Blood Group Antigens Humans *Hydrogen Sulfide Postmortem Changes *Sulfonium Compounds Thiosulfates Biomarker Decomposition kinetics Hydrogen sulfide Putrefactive production Thiosulfate Trimethylsulfonium; |
Notes: | "MedlineWang, Ruili Fan, Zheyu Wei, Zhiwen Wang, Lele Wang, Tao Li, Wenyue Ma, Dong Guo, Zhongyuan Yun, Keming eng Ireland 2022/08/26 Forensic Sci Int. 2022 Nov; 340:111426. doi: 10.1016/j.forsciint.2022.111426. Epub 2022 Aug 19" |