Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractChanging attitudes to condoms through advertising    Next AbstractNon-Invasive Detection and Staging of Colorectal Cancer Using a Portable Electronic Nose »

Comput Biol Chem


Title:Mechanistic insights into mode of action of rice allene oxide synthase on hydroxyperoxides: An intermediate step in herbivory-induced jasmonate pathway
Author(s):Tyagi C; Singh A; Singh IK;
Address:"Unit of Simulation and Informatics, IARI, Pusa Road, New Delhi- 110012. Electronic address: cheta231@gmail.com. Department of Botany, Hans Raj College, University of Delhi, Delhi- 110007. Electronic address: archanasingh@hrc.du.ac.in. Molecular Biology Research Lab., Deshbandhu College, University of Delhi, Kalkaji, New Delhi- 110019. Electronic address: iksingh@db.du.ac.in"
Journal Title:Comput Biol Chem
Year:2016
Volume:20160702
Issue:
Page Number:227 - 236
DOI: 10.1016/j.compbiolchem.2016.07.002
ISSN/ISBN:1476-928X (Electronic) 1476-9271 (Linking)
Abstract:"Various types of oxygenated fatty acids termed 'oxylipins' are involved in plant response to herbivory. Oxylipins like jasmonic acid (JA) and green leafy volatiles (GLVs) are formed by the action of enzymes like allene oxide synthase (AOS) and hydroxyperoxide lyase (HPL) respectively. In this study, we focus on AOS of Oryza sativa sb. Japonica, that interact with 9- and 13- hydroxyperoxides to produce intermediates of jasmonate pathway and compare it with rice HPL that yields GLVs. We attempt to elucidate the interaction pattern by computational docking protocols keeping the Arabidopsis AOS system as the reference model system. Both 9-hydroxyperoxide and 13-hydroxyperoxide fit into the active site of AOS completely with Phe347, Phe92, Ile463, Val345, and Asn278 being the common interacting residues. Phe347 and Phe92 were mutated with Leucine and docked again with the hydroxyperoxides. The Phe347-->Leu347 mutant showed a different mode of action than AOS-hydroxyperoxide complex with Trp413 in direct bonding with the OOH group of 9-hydroxyperoxide. The loss of Lys88-OOH interaction in 13-hydroxyperoxide and loss-of-interaction of Leu347 indicated the importance of Phe347 residue in hydroxyperoxide catalysis. The second mutant Phe92-->Leu92 also shows a very different interaction pattern with 13-hydroxyperoxide but not with 9-hydroxyperoxide.Therefore, it can be concluded that Phe347 is more crucial for AOS functionality than Phe92. The aromatic ring of a Phenylalanine residue is important for catalysis and its mutation affects the binding of the two ligands. Another important residue is Asn278 which is an important part of the AOS catalytic site for maintaining stability and can be compared with the Arabidopsis AOS residue Asn321. Lastly, the interaction of HPL with these two derivatives involves Leu363 residue instead of Phe347 and thus, validating the importance of Phe-->Leu substitution to be the reason of different modes of action that result in completely different products from same substrates"
Keywords:"Amino Acid Sequence Catalytic Domain *Computer Simulation Cyclopentanes/*chemistry Intramolecular Oxidoreductases/chemistry/genetics/*metabolism Models, Biological Oryza/chemistry/*enzymology Oxylipins/*chemistry Peroxides/*chemistry Sequence Alignment St;"
Notes:"MedlineTyagi, Chetna Singh, Archana Singh, Indrakant Kumar eng Research Support, Non-U.S. Gov't England 2016/07/30 Comput Biol Chem. 2016 Oct; 64:227-236. doi: 10.1016/j.compbiolchem.2016.07.002. Epub 2016 Jul 2"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 27-11-2024