Title: | Characteristic oxidation behavior of beta-cyclocitral from the cyanobacterium Microcystis |
Author(s): | Tomita K; Hasegawa M; Arii S; Tsuji K; Bober B; Harada K; |
Address: | "Aichi Prefectural Institute of Public Health, Tsujimachi, Kita, Nagoya, 462-8576, Japan. kouji_tomita@pref.aichi.lg.jp. Graduate School of Environmental and Human Science and Faculty of Pharmacy, Meijo University, 150 Yagotoyama Tempaku, Nagoya, 468-8503, Japan. kouji_tomita@pref.aichi.lg.jp. Graduate School of Environmental and Human Science and Faculty of Pharmacy, Meijo University, 150 Yagotoyama Tempaku, Nagoya, 468-8503, Japan. Kanagawa Prefectural Institute of Public Health, Shimomachiya, Chigasaki, Kanagawa, 253-0087, Japan. Department of Plant Physiology and Development, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland" |
Journal Title: | Environ Sci Pollut Res Int |
DOI: | 10.1007/s11356-016-6369-y |
ISSN/ISBN: | 1614-7499 (Electronic) 0944-1344 (Linking) |
Abstract: | "The cyanobacterium Microcystis produces volatile organic compounds such as beta-cyclocitral and 3-methyl-1-butanol. The lysis of cyanobacteria involving the blue color formation has been occasionally observed in a natural environment. In this study, we focused on the oxidation behavior of beta-cyclocitral that contributed to the blue color formation in a natural environment and compared beta-cyclocitral with a structurally related compound concerning its oxidation, acidification, and lytic behavior. The oxidation products of beta-cyclocitral were identified by the addition of beta-cyclocitral in water, in which 2,2,6-trimethylcyclohex-1-ene-1-yl formate and 2,2,6-trimethylcyclohexanone were structurally characterized. That is, beta-cyclocitral was easily oxidized to produce the corresponding carboxylic acid and the enol ester in water without an oxidizing reagent, suggesting that this oxidation proceeded according to the Baeyer-Villiger oxidation. The oxidation behavior of beta-cyclocitral in a laboratory was different from that in the natural environment, in which 2,2,6- trimethylcyclohexanone was detected at the highest amount in the natural environment, whereas the highest amount in the laboratory was beta-cyclocitric acid. A comparison of beta-cyclocitral with structurally similar aldehydes concerning the lytic behavior of a Microcystis strain and the acidification process indicated that only beta-cyclocitral was easily oxidized. Furthermore, it was found that a blue color formation occurred between pH 5.5 and 6.5, suggesting that chlorophyll a and beta-carotene are unstable and decomposed, whereas phycocyanin was stable to some extent in this range. The obtained results of the characteristic oxidation behavior of beta-cyclocitral would contribute to a better understanding of the cyanobacterial life cycle" |
Keywords: | Aldehydes/*chemistry/metabolism Chlorophyll/chemistry Chlorophyll A Color Diterpenes/*chemistry/metabolism Hydrogen-Ion Concentration Microcystis/*metabolism Oxidation-Reduction Pentanols/*chemistry/metabolism beta Carotene/chemistry Acidification Blue co; |
Notes: | "MedlineTomita, Koji Hasegawa, Masateru Arii, Suzue Tsuji, Kiyomi Bober, Beata Harada, Ken-Ichi eng Germany 2016/03/11 Environ Sci Pollut Res Int. 2016 Jun; 23(12):11998-2006. doi: 10.1007/s11356-016-6369-y. Epub 2016 Mar 10" |