|
J Chem Ecol
Title: | cis-Jasmone Elicits Aphid-Induced Stress Signalling in Potatoes |
|
Author(s): | Sobhy IS; Woodcock CM; Powers SJ; Caulfield JC; Pickett JA; Birkett MA; |
|
Address: | "Rothamsted Research, West Common, Harpenden, AL5 2JQ, Hertfordshire, UK. Department of Plant Protection, Public Service Center of Biological Control (PSCBC), Faculty of Agriculture, Suez Canal University, Ismailia, 41522, Egypt. Department of Microbial & Molecular Systems, KU Leuven, Campus De Nayer, B-2860 Sint-Katelijne-Waver, Leuven, Belgium. Rothamsted Research, West Common, Harpenden, AL5 2JQ, Hertfordshire, UK. mike.birkett@rothamsted.ac.uk" |
|
Journal Title: | J Chem Ecol |
Year: | 2017 |
Volume: | 20170127 |
Issue: | 1 |
Page Number: | 39 - 52 |
DOI: | 10.1007/s10886-016-0805-9 |
|
ISSN/ISBN: | 1573-1561 (Electronic) 0098-0331 (Print) 0098-0331 (Linking) |
|
Abstract: | "Elicitation of plant defense signaling that results in altered emission of volatile organic compounds (VOCs) offers opportunities for protecting plants against arthropod pests. In this study, we treated potato, Solanum tuberosum L., with the plant defense elicitor cis-jasmone (CJ), which induces the emission of defense VOCs and thus affects the behavior of herbivores. Using chemical analysis, electrophysiological and behavioral assays with the potato-feeding aphid Macrosiphum euphorbiae, we showed that CJ treatment substantially increased the emission of defense VOCs from potatoes compared to no treatment. Coupled GC-electroantennogram (GC-EAG) recordings from the antennae of M. euphorbiae showed robust responses to 14 compounds present in induced VOCs, suggesting their behavioral role in potato/aphid interactions. Plants treated with CJ and then challenged with M. euphorbiae were most repellent to alate M. euphorbiae. Principal component analysis (PCA) of VOC collections suggested that (E)-2-hexenal, (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene (TMTT), (E)-beta-farnesene, (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), methyl salicylate (MeSA), CJ, and methyl benzoate (MeBA) were the main VOCs contributing to aphid behavioral responses, and that production of TMTT, (E)-beta-farnesene, CJ, and DMNT correlated most strongly with aphid repellency. Our findings confirm that CJ can enhance potato defense against aphids by inducing production of VOCs involved in aphid-induced signalling" |
|
Keywords: | "Animals Aphids/*physiology Behavior, Animal Cyclopentanes/*pharmacology Electrophysiological Phenomena Female *Host-Parasite Interactions Olfactometry Oxylipins/*pharmacology Phytochemicals/metabolism Solanum tuberosum/*drug effects/metabolism/parasitolog;" |
|
Notes: | "MedlineSobhy, Islam S Woodcock, Christine M Powers, Stephen J Caulfield, John C Pickett, John A Birkett, Michael A eng BB/E015794/1/BB_/Biotechnology and Biological Sciences Research Council/United Kingdom 2017/01/29 J Chem Ecol. 2017 Jan; 43(1):39-52. doi: 10.1007/s10886-016-0805-9. Epub 2017 Jan 27" |
|
|
|
|
|
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 17-11-2024
|