Title: | Airborne signals of communication in sagebrush: a pharmacological approach |
Author(s): | Shiojiri K; Ishizaki S; Ozawa R; Karban R; |
Address: | "a Faculty of Agriculture; Ryukoku University ; Otsu , Japan. b Department of Natural Environmental Science ; Niigata University ; Niigata , Japan. c Center for Ecological Research; Kyoto University ; Kyoto , Japan. d Department of Entomology ; University of California ; Davis , CA USA" |
DOI: | 10.1080/15592324.2015.1095416 |
ISSN/ISBN: | 1559-2324 (Electronic) 1559-2316 (Print) 1559-2316 (Linking) |
Abstract: | "When plants receive volatiles from a damaged plant, the receivers become more resistant to herbivory. This phenomenon has been reported in many plant species and called plant-plant communication. Lab experiments have suggested that several compounds may be functioning as airborne signals. The objective of this study is to identify potential airborne signals used in communication between sagebrush (Artemisia tridentata) individuals in the field. We collected volatiles of one branch from each of 99 sagebrush individual plants. Eighteen different volatiles were detected by GC-MS analysis. Among these, 4 compounds; 1.8-cineol, beta-caryophyllene, alpha-pinene and borneol, were investigated as signals of communication under natural conditions. The branches which received either 1,8-cineol or beta-caryophyllene tended to get less damage than controls. These results suggested that 1,8-cineol and beta-caryophyllene should be considered further as possible candidates for generalized airborne signals in sagebrush" |
Keywords: | "Artemisia/*physiology Herbivory/physiology Plant Leaves/physiology *Signal Transduction Volatile Organic Compounds/analysis 1, 8-cineol airborne signals induced response plant communication plant volatiles sagebrush beta-caryophyllene;" |
Notes: | "MedlineShiojiri, Kaori Ishizaki, Satomi Ozawa, Rika Karban, Richard eng Research Support, Non-U.S. Gov't 2015/09/30 Plant Signal Behav. 2015; 10(12):e1095416. doi: 10.1080/15592324.2015.1095416" |