Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractChamber studies on nonvented decorative fireplaces using liquid or gelled ethanol fuel    Next Abstract"Comparison of lichen, conifer needles, passive air sampling devices, and snowpack as passive sampling media to measure semi-volatile organic compounds in remote atmospheres" »

Sci Total Environ


Title:Latex paint as a delivery vehicle for diethylphthalate and di-n-butylphthalate: predictable boundary layer concentrations and emission rates
Author(s):Schripp T; Salthammer T; Fauck C; Beko G; Weschler CJ;
Address:"Fraunhofer Wilhelm-Klauditz-Institut (WKI), Department of Material Analysis and Indoor Chemistry, Bienroder Weg 54E, D-38108 Braunschweig, Germany. Electronic address: tobias.schripp@wki.fraunhofer.de. Fraunhofer Wilhelm-Klauditz-Institut (WKI), Department of Material Analysis and Indoor Chemistry, Bienroder Weg 54E, D-38108 Braunschweig, Germany. International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Lyngby, Denmark. International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Lyngby, Denmark; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA"
Journal Title:Sci Total Environ
Year:2014
Volume:20140721
Issue:
Page Number:299 - 305
DOI: 10.1016/j.scitotenv.2014.06.141
ISSN/ISBN:1879-1026 (Electronic) 0048-9697 (Linking)
Abstract:"The description of emission processes of volatile and semi-volatile organic compounds (VOCs and SVOCs) from building products requires a detailed understanding of the material and the air flow conditions at the surface boundary. The mass flux between the surface of the material and air depends on the mass transfer coefficient (hm) through the boundary layer, the gas phase concentration of the target compound immediately adjacent to the material (y0), and the gas-phase concentration in bulk air (y(t)). In the present study emission experiments were performed in two chambers of quite different sizes (0.25 m(3) and 55 m(3)), and, in the larger chamber, at two different temperatures (23 degrees C and 30 degrees C). The emitting material was latex wall paint that had been doped with two plasticizers, diethylphthalate (DEP) and di-n-butylphthalate (DnBP). The phthalate content in the paint was varied in the small chamber experiment to evaluate the impact of the initial concentration in the bulk material (C0) on the emission rate. Boundary layer theory was applied to calculate hm for the specific phthalates from the Sherwood number (Sh) and the diffusion coefficient (Dair). Then y0 was determined based on the bulk gas-phase concentration at steady state (y ). For both, DEP and DnBP, the y0 obtained was lower than the respective saturation vapor pressure (Ps). Furthermore, for both phthalates in latex paint, the material/air partition coefficient (C0/y0) was close in value to the octanol/air partition coefficient (KOA). This study provides a basis for designing phthalate emitting reference materials that mimic the emission behavior of common building materials"
Keywords:Air Pollutants/*analysis/chemistry Dibutyl Phthalate/analysis/*chemistry Latex/*chemistry Paint/*analysis Phthalic Acids/analysis/*chemistry Volatilization Boundary layer Mass transfer coefficient Material/air partition coefficient Phthalates Reference ma;
Notes:"MedlineSchripp, Tobias Salthammer, Tunga Fauck, Christian Beko, Gabriel Weschler, Charles J eng Netherlands 2014/07/25 Sci Total Environ. 2014 Oct 1; 494-495:299-305. doi: 10.1016/j.scitotenv.2014.06.141. Epub 2014 Jul 21"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 21-11-2024