Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractFeasibility of using a microalgal-bacterial consortium for treatment of toxic coke wastewater with concomitant production of microbial lipids    Next AbstractBacterial volatiles induce systemic resistance in Arabidopsis »

Proc Natl Acad Sci U S A


Title:Bacterial volatiles promote growth in Arabidopsis
Author(s):Ryu CM; Farag MA; Hu CH; Reddy MS; Wei HX; Pare PW; Kloepper JW;
Address:"Department of Entomology and Plant Pathology, Auburn University, 209 Life Sciences Building, Auburn, AL 36849, USA"
Journal Title:Proc Natl Acad Sci U S A
Year:2003
Volume:20030408
Issue:8
Page Number:4927 - 4932
DOI: 10.1073/pnas.0730845100
ISSN/ISBN:0027-8424 (Print) 1091-6490 (Electronic) 0027-8424 (Linking)
Abstract:"Several chemical changes in soil are associated with plant growth-promoting rhizobacteria (PGPR). Some bacterial strains directly regulate plant physiology by mimicking synthesis of plant hormones, whereas others increase mineral and nitrogen availability in the soil as a way to augment growth. Identification of bacterial chemical messengers that trigger growth promotion has been limited in part by the understanding of how plants respond to external stimuli. With an increasing appreciation of how volatile organic compounds signal plants and serve in plant defense, investigations into the role of volatile components in plant-bacterial systems now can follow. Here, we present chemical and plant-growth data showing that some PGPR release a blend of volatile components that promote growth of Arabidopsis thaliana. In particular, the volatile components 2,3-butanediol and acetoin were released exclusively from two bacterial strains that trigger the greatest level of growth promotion. Furthermore, pharmacological applications of 2,3-butanediol enhanced plant growth whereas bacterial mutants blocked in 2,3-butanediol and acetoin synthesis were devoid in this growth-promotion capacity. The demonstration that PGPR strains release different volatile blends and that plant growth is stimulated by differences in these volatile blends establishes an additional function for volatile organic compounds as signaling molecules mediating plant-microbe interactions"
Keywords:"Arabidopsis/genetics/*growth & development/*microbiology Bacillus/metabolism Bacteria/*metabolism Butylene Glycols/metabolism Enterobacter cloacae/metabolism Models, Biological Mutation Plant Growth Regulators/*metabolism Pseudomonas fluorescens/metabolis;"
Notes:"MedlineRyu, Choong-Min Farag, Mohamed A Hu, Chia-Hui Reddy, Munagala S Wei, Han-Xun Pare, Paul W Kloepper, Joseph W eng Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. 2003/04/10 Proc Natl Acad Sci U S A. 2003 Apr 15; 100(8):4927-32. doi: 10.1073/pnas.0730845100. Epub 2003 Apr 8"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 26-11-2024