Title: | Analysis of the pheromone signaling pathway by RT-qPCR in the budding yeast Saccharomyces cerevisiae |
Author(s): | Ramos-Alonso L; Garcia I; Enserink JM; Chymkowitch P; |
Address: | "Section for Biochemistry and Molecular Biology, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway. Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, 0379 Oslo, Norway. Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318 Oslo, Norway" |
DOI: | 10.1016/j.xpro.2022.101210 |
ISSN/ISBN: | 2666-1667 (Electronic) 2666-1667 (Linking) |
Abstract: | "FUS3 and STE2 expression levels can be used as reporters for signaling through the pheromone pathway in the budding yeast Saccharomyces cerevisiae. Here, we describe an optimized protocol to measure the expression levels of FUS3 and STE2 using quantitative reverse transcription PCR (RT-qPCR). We describe the steps for comparing untreated and pheromone-treated yeast cells and how to quantify the changes in various deletion strains. The protocol can be applied to determine potential regulators of the pheromone pathway. For complete details on the use and execution of this protocol, please refer to Garcia et al. (2021)" |
Keywords: | "Mitogen-Activated Protein Kinases/metabolism Pheromones/metabolism Saccharomyces cerevisiae/genetics *Saccharomyces cerevisiae Proteins/genetics Signal Transduction/genetics *Yeast, Dried Cell Biology Gene Expression Model Organisms Molecular Biology Sign;" |
Notes: | "MedlineRamos-Alonso, Lucia Garcia, Ignacio Enserink, Jorrit M Chymkowitch, Pierre eng Research Support, Non-U.S. Gov't 2022/03/11 STAR Protoc. 2022 Mar 3; 3(1):101210. doi: 10.1016/j.xpro.2022.101210. eCollection 2022 Mar 18" |