Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractConsumer exposures to laser printer-emitted engineered nanoparticles: A case study of life-cycle implications from nano-enabled products    Next AbstractEvaluation of a high flow rate electrostatic precipitator (ESP) as a particulate matter (PM) collector for toxicity studies »

Crit Rev Toxicol


Title:Nanoparticle exposures from nano-enabled toner-based printing equipment and human health: state of science and future research needs
Author(s):Pirela SV; Martin J; Bello D; Demokritou P;
Address:"a Department of Environmental Health, Harvard T.H. Chan School of Public Health , Center for Nanotechnology and Nanotoxicology , Boston , MA , USA. b Department of Public Health , UMass Lowell , Lowell , MA , USA"
Journal Title:Crit Rev Toxicol
Year:2017
Volume:20170519
Issue:8
Page Number:678 - 704
DOI: 10.1080/10408444.2017.1318354
ISSN/ISBN:1547-6898 (Electronic) 1040-8444 (Print) 1040-8444 (Linking)
Abstract:"Toner formulations used by laser printers (LP) and photocopiers (PC), collectively called 'toner-based printing equipment' (TPE), are nano-enabled products (NEP) because they contain several engineered nanomaterials (ENM) that improve toner performance. It has been shown that during consumer use (printing), these ENM are released in the air, together with other semi-volatile organic nanoparticles, and newly formed gaseous co-pollutants such as volatile organic compounds (VOC). The aim of this review is to detail and analyze physico-chemical and morphological (PCM), as well as the toxicological properties of particulate matter (PM) emissions from TPE. The review covers evolution of science since the early 2000, when this printing technology first became a subject of public interest, as well as the lagging regulatory framework around it. Important studies that have significantly changed our understanding of these exposures are also highlighted. The review continues with a critical appraisal of the most up-to-date cellular, animal and human toxicological evidence on the potential adverse human health effects of PM emitted from TPE. We highlight several limitations of existing studies, including (i) use of high and often unrealistic doses in vitro or in vivo; (ii) unrealistically high-dose rates in intratracheal instillation studies; (iii) improper use of toners as surrogate for emitted nanoparticles; (iv) lack of or inadequate PCM characterization of exposures; and (v) lack of dosimetry considerations in in vitro studies. Presently, there is compelling evidence that the PM(0.1) from TPE are biologically active and capable of inducing oxidative stress in vitro and in vivo, respiratory tract inflammation in vivo (in rats) and in humans, several endpoints of cellular injury in monocultures and co-cultures, including moderate epigenetic modifications in vitro. In humans, limited epidemiological studies report typically 2-3 times higher prevalence of chronic cough, wheezing, nasal blockage, excessive sputum production, breathing difficulties, and shortness of breath, in copier operators relative to controls. Such symptoms can be exacerbated during chronic exposures, and in individuals susceptible to inhaled pollutants. Thus respiratory, immunological, cardiovascular, and other disorders may be developed following such exposures; however, further toxicological and larger scale molecular epidemiological studies must be done to fully understand the mechanism of action of these TPE emitted nanoparticles. Major research gaps have also been identified. Among them, a methodical risk assessment based on 'real world' exposures rather than on the toner particles alone needs to be performed to provide the much-needed data to establish regulatory guidelines protective of individuals exposed to TPE emissions at both the occupational and consumer level. Industry-wide molecular epidemiology as well as mechanistic animal and human studies are also urgently needed"
Keywords:Air Pollutants/toxicity Animals Humans Nanoparticles/toxicity *Occupational Exposure Particulate Matter/toxicity *Printing Research/trends Toners asthma lung inflammation nanoparticle exposures nanotoxicology photocopying printer;
Notes:"MedlinePirela, Sandra Vanessa Martin, John Bello, Dhimiter Demokritou, Philip eng S10 OD020086/OD/NIH HHS/ T32 HL007118/HL/NHLBI NIH HHS/ Review England 2017/05/20 Crit Rev Toxicol. 2017 Sep; 47(8):678-704. doi: 10.1080/10408444.2017.1318354. Epub 2017 May 19"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 21-11-2024