Title: | Four quantitative trait loci that influence worker sterility in the honeybee (Apis mellifera) |
Author(s): | Oxley PR; Thompson GJ; Oldroyd BP; |
Address: | "Behaviour and Genetics of Social Insects Laboratory, School of Biological Sciences, University of Sydney, Sydney, NSW 2006, Australia. peter.oxley@usyd.edu.au" |
DOI: | 10.1534/genetics.108.087270 |
ISSN/ISBN: | 0016-6731 (Print) 0016-6731 (Linking) |
Abstract: | "The all-female worker caste of the honeybee (Apis mellifera) is effectively barren in that workers refrain from laying eggs in the presence of a fecund queen. The mechanism by which workers switch off their ovaries in queenright colonies is pheromonally cued, but there is genetically based variation among individuals: some workers have high thresholds for ovary activation, while for others the response threshold is lower. Genetic variation for threshold response by workers to ovary-suppressing cues is most evident in 'anarchist' colonies in which mutant patrilines have a proportion of workers that activate their ovaries and lay eggs, despite the presence of a queen. In this study we use a selected anarchist line to create a backcross queenright colony that segregated for high and low levels of ovary activation. We used 191 informative microsatellite loci, covering all 16 linkage groups to identify QTL for ovary activation and test the hypothesis that anarchy is recessively inherited. We reject this hypothesis, but identify four QTL that together explain approximately 25% of the phenotypic variance for ovary activation in our mapping population. They provide the first molecular evidence for the existence of quantitative loci that influence selfish cheating behavior in a social animal" |
Keywords: | "Animals Bees/*genetics Chromosome Mapping Crosses, Genetic Female *Hierarchy, Social Infertility/*genetics Lod Score Male Ovary *Quantitative Trait Loci;" |
Notes: | "MedlineOxley, Peter R Thompson, Graham J Oldroyd, Benjamin P eng Research Support, Non-U.S. Gov't 2008/06/20 Genetics. 2008 Jul; 179(3):1337-43. doi: 10.1534/genetics.108.087270. Epub 2008 Jun 18" |