Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractEvaluating IAQ and Energy Impacts of Ventilation in a Net-Zero Energy House Using a Coupled Model    Next Abstract"Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic aerosol" »

Environ Sci Technol


Title:Contribution of first- versus second-generation products to secondary organic aerosols formed in the oxidation of biogenic hydrocarbons
Author(s):Ng NL; Kroll JH; Keywood MD; Bahreini R; Varutbangkul V; Flagan RC; Seinfeld JH; Lee A; Goldstein AH;
Address:"Department of Environmental Science, California Institute of Technology, Pasadena, California 91125, USA"
Journal Title:Environ Sci Technol
Year:2006
Volume:40
Issue:7
Page Number:2283 - 2297
DOI: 10.1021/es052269u
ISSN/ISBN:0013-936X (Print) 0013-936X (Linking)
Abstract:"Biogenic hydrocarbons emitted by vegetation are important contributors to secondary organic aerosol (SOA), but the aerosol formation mechanisms are incompletely understood. In this study, the formation of aerosols and gas-phase products from the ozonolysis and photooxidation of a series of biogenic hydrocarbons (isoprene, 8 monoterpenes, 4 sesquiterpenes, and 3 oxygenated terpenes) are examined. By comparing aerosol growth (measured by Differential Mobility Analyzers, DMAs) and gas-phase concentrations (monitored by a Proton Transfer Reaction Mass Spectrometer, PTR-MS), we study the general mechanisms of SOA formation. Aerosol growth data are presented in terms of a 'growth curve', a plot of aerosol mass formed versus the amount of hydrocarbon reacted. From the shapes of the growth curves, it is found that all the hydrocarbons studied can be classified into two groups based entirely on the number of double bonds of the hydrocarbon, regardless of the reaction systems (ozonolysis or photooxidation) and the types of hydrocarbons studied: compounds with only one double bond and compounds with more than one double bond. For compounds with only one double bond, the first oxidation step is rate-limiting, and aerosols are formed mainly from low volatility first-generation oxidation products; whereas for compounds with more than one double bond, the second oxidation step may also be rate-limiting and second-generation products contribute substantially to SOA growth. This behavior is characterized by a vertical section in the growth curve, in which continued aerosol growth is observed even after all the parent hydrocarbon is consumed"
Keywords:Aerosols/*chemistry Hydrocarbons/*chemistry Kinetics Mass Spectrometry Oxidation-Reduction Ozone/chemistry Photochemistry;
Notes:"MedlineNg, Nga L Kroll, Jesse H Keywood, Melita D Bahreini, Roya Varutbangkul, Varuntida Flagan, Richard C Seinfeld, John H Lee, Anita Goldstein, Allen H eng Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. 2006/05/02 Environ Sci Technol. 2006 Apr 1; 40(7):2283-97. doi: 10.1021/es052269u"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 19-12-2024